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Abstract

The current size of the Internet makes it impossible to host major Web sites on a single server.
Replication can improve both the availability and the performance of a Web hosting service.
Current replication policies heavily rely on the origin server. Therefore, this thesis presents
Decrepol, a decentralized replication policy for Web documents that assumes the origin server
to be unavailable most of the time. First, we present a replication policy that achieves full
replication and is structured following epidemic protocols. With this policy we are able to
spread notifications across 128 replica servers in about 5 gossip rounds. Next, we present a
decentralized replication policy that allows for controlled partial replication. We create two
versions of the partial replication policy. The first one is based on epidemic protocols and is an
extented version of the full replication policy. However, in this policy locating replicas becomes
a problem. Therefore, we also present an improved unstructured version that facilitates locating
content. With this version, inserting and retrieving documents requires traversing about three
hops. The second version is based on structured peer-to-peer systems. Inserts take about four
hops, retrieves only two hops if we cache document searches. We show that it is possible to create
an unstructured partial replication policy that performs almost identically to a structured one
and thus can be an interesting alternative.
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Chapter 1

Introduction

The current size of the Internet makes it impossible to host major Web sites on a single server.
As Web servers may fail and parts of the network can be overloaded, a Web server can easily
become unavailable. To prevent a Web site of becoming unreachable, one can use replication.
By distributing multiple copies of documents at well-chosen locations, replica servers, one can
improve both the availability and the performance of the Web hosting service. Availability
increases as clients can switch to another replica when a server fails. Placing a replica of a
data item hosted by a heavily loaded server on a server with a lower workload and subsequently
dividing the workload between these two servers can also improve performance. Furthermore,
placing replicas in the proximity of clients can reduce client-perceived latencies.

However, having multiple copies of a document introduces a consistency problem. When one
updates a copy of a data item, the other copies have to be destroyed or brought up-to-date as
well to prevent clients from retrieving stale documents. Other issues that we have to take into
account when we replicate Web documents are the number of replicas of a document, where we
place them, how we route a request for a document to a server hosting a replica, and how we
ensure availability in the presence of failures. We define a replication policy as a set of algorithms
that takes care of these issues.

Current replication policies heavily rely on the origin server, which we define as the server
that hosts the original versions of the Web documents in the system. The origin is the only
server that can update these documents. It is also responsible for placing the right number of
replicas at suitable replica servers and keeping them consistent. A problem of this architecture
is that the origin server becomes a single point of failure. A basic solution for this problem is to
use one or more backup servers that all contain a full copy of the documents of the origin server
and which one can contact in case the origin server is unavailable. However, one needs to keep
these backup servers consistent.

Another issue of current replication policies is that the origin server has to be online all the
time. When an origin server is temporarily unavailable, backup servers can cover that, but these
backup servers are in fact full copies of the origin server.

Finally, when a replica server becomes unavailable, the origin server cannot inform this
replica server about a document update. However, when the replica server recovers it needs to
receive the update messages it missed during the failure in order to update its documents. As
the origin is responsible for keeping the replicas consistent, it has to buffer the update messages
until the replica server becomes available again.

The goal of this thesis is to design a decentralized replication policy for Web documents.
The origin server does not have to be online all the time and can for example be a laptop or a
PDA. We need to organize the replica servers in a decentralized fashion such that at least one
of them has a copy of each document. If a client requests a replica server for a document the
server does not possess locally, this server should know where to fetch it from. Replica servers
can also fail. The replication policy should therefore be tunable such that copies are available
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at n different replica servers. This way the replication policy supports up to n − 1 unavailable
replica servers. Finally, the replication policy must implement best-effort weak consistency by
ensuring that updates are spread in a reasonable limited time interval after an update takes
place at the original document.

An important feature of this replication policy is that it can assume the origin server to
be unavailable most of the time. It only needs the presence of the origin server to inform the
replica servers about a new or updated document. The origin server can achieve this by just
sending a notification to one of the replica servers and subsequently waiting until at least one
replica server fetches the document. The replica servers are responsible of further spreading the
notification among themselves.

The properties of this decentralized replication policy come close to those offered by peer-
to-peer overlays: sharing computer resources, decentralization, self-organization, resilience to
network and server failures. Therefore, we decided to structure the replication policy along a
peer-to-peer architecture. We first introduce a replication policy that achieves full replication,
which means that every replica server hosts a copy of all documents of the origin server. This
is a simple version of a replication policy that we use as the base of a replication policy that
achieves a more general form of replication, namely partial replication. The main challenge for
the full replication policy is to spread the notifications across all replica servers in an efficient and
decentralized way. These requirements are very similar to the properties of epidemic protocols.
Therefore, we structure the full replication policy following epidemic protocols.

Next, we present a decentralized replication policy that allows for controlled partial replica-
tion. With controlled partial replication documents are replicated to exactly k replica servers
in a network with N nodes and 0 < k ≤ N . We can distinguish a number of issues of the
partial replication policy. First, the policy has to make sure that it places replicas at exactly k
replica servers. Second, it needs to keep the replicas of a document consistent in the presence
of updates, as we may place replicas of an updated document at other replica servers than the
replicas of the previous version of the document. Third, the policy must be able to locate repli-
cas, as clients may request documents from replica servers that do not have a local copy of the
requested document. Finally, the policy has to deal with node and network failures.

We create two versions of the partial replication policy. The first one is based on epidemic
protocols and is an extended version of the full replication policy. The advantage of epidemic
protocols is that they are easily maintained. However, as there is no correlation between nodes
and the content, locating content may become difficult. In contrast, the second version is based
on structured peer-to-peer systems. An advantage of these structured systems is that they
provide a scalable solution for efficiently routing queries to the node with the desired content.
However, one needs to maintain the structure (required for efficiently routing messages) in the
presence of nodes joining and leaving the system. We compare the two versions and identify
their strong and weak properties.

This thesis is structured as follows. In Chapter 2 we discuss the issues of replication policies
for Web documents. Chapter 3 gives an overview of peer-to-peer systems and describes how we
can use peer-to-peer technology for our decentralized replication policy. In Chapter 4 we present
and evaluate the full replication policy; Chapter 5 presents and evaluates the unstructured and
structured versions of the partial replication policy. Finally, Chapter 6 concludes.
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Chapter 2

Related Work: Replication Policies
for Web Documents

Achieving good performance with distributed systems in large computer networks such as the
Internet can be hard. Performance bottlenecks are usually due to failing or poorly performing
servers and overloaded parts of the network.

Replication is a technique that can be used to improve the quality of distributed services. By
distributing multiple copies of data, replicas, at well-chosen locations, replica servers, one can
improve both the availability and the performance of the service [24, 15]. Availability increases
as clients can switch to another replica when a server fails. Creating a copy of a data item
hosted by a heavily loaded server on a server with a lower load and subsequently dividing the
workload between the two servers can also improve performance. Furthermore, placing replicas
in the proximity of the clients can reduce client-perceived latencies.

Although replication can solve scalability problems, having multiple data copies introduces
a consistency problem. When one updates a copy of a data item, the other copies have to be
destroyed or brought up-to-date as well to prevent clients from retrieving stale data. Unfortu-
nately, maintaining this consistency is often costly.

Web site hosting is a distributed service where replication has been increasingly applied in
the last few years [22]. Placing replicas of a site’s Web documents at replica servers can improve
the accessibility of the Web site. There are many ways to replicate a Web document across
multiple servers. One must decide how many copies of the document are needed, where to
create them and how to keep them consistent. Furthermore, a decision is needed on how to
route a request for a document to a server hosting a replica. Another issue that one has to
considere is how to ensure availability when failures occur. In this thesis we define a replication

policy as a set of algorithms that makes these decisions.
Next, we give an overview of the research that has been done on these replication policy

issues. Section 2.1 describes which issues determine the number of necessary replicas of a
document. Section 2.2 discusses the problem of finding good locations to host replicas of a
document. Section 2.3 describes how one can keep multiple copies of a document consistent.
We discuss request routing in Section 2.4. Section 2.5 discusses availability. Finally, Section 2.6
gives an overview of the current replication policies in Globule and states what the proposed
replication policy adds to them.

2.1 Number of replicas

The number of necessary replicas of a certain Web document depends on two issues: the re-
quested degree of fault tolerance and the requested client-perceived performance. Furthermore,
this number is often bounded by storage and administrative constraints.
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Fault tolerance affects the decision of how many replicas are needed, as at least n+1 replicas
are needed to support n failing replicas. This way, a client can switch to at least one correctly
working replica when up to n replicas are unavailable. Consequently, an increase in the number
of replicas increases the reliability of the document.

Another issue is the client-perceived performance, i.e. the communication delay experienced
by the clients. One needs to consider two things when determining the number of replicas
to achieve a given performance: the popularity of the document and the document’s client
locations. Popular documents are requested more often and generate more workload on the
hosting server. By creating several replicas at different servers this load can be spread across
these servers. Besides the request rate of a document, the locations of the requesting clients
can also influence the required number of replicas. When clients are located in different parts of
the Internet, deploying several replicas in these areas and redirecting each client to its proximal
replica can improve the communication delay between the client and the replica. Ideally, one
should place replicas in those areas where the document is most popular.

Unfortunately, deploying replicas does not come for free. One has to create all replicas at
a replica server. Besides the storage costs, there are also administrative costs, as one has to
keep the replicas consistent. This introduces global communication. We discuss consistency
enforcement in more detail in Section 2.3. The decision of how many replicas one needs for a
certain document is a tradeoff between reliability and performance on the one hand, and the
storage and administrative costs on the other hand. This decision is up to the owner of the
document and depends on his requirements. The goal of a good replication policy is, when one
has determined the number of replicas, to take care of creating that number of replicas and
spreading them among the replica servers.

2.2 Replica placement

Replica placement is the problem of finding good locations to host replicas of a given document.
In addition, one needs a mechanism to inform a selected replica server about the creation of the
new replica. The most widely used mechanisms are pull-based caching and push replication. In
pull-based caching, when one issues a request for a document to a replica server that currently
does not own that document, the replica server fetches it from the origin server. In push
replication, the origin server informs the replica server of a replica creation by explicitly pushing
the replica to the replica server. Creating a replica of a new document at a replica server is
basically the same as creating a replica of an updated document at a replica server. Therefore,
we present more details about these inform mechanisms in the next section about consistency
enforcement. The remaining of this section discusses in more detail the selection of replica
servers that should host replicas of a given Web document.

The replica placement problem consists of selecting K out of N potential replica servers to
host replicas of a document, such that some objective function is optimized under a given client
access pattern and replica update pattern. The objective function can be minimizing client
latency or total bandwidth consumption, or an overall cost function if each link is associated
with a cost.

The problem of replica placement can be modeled as the facility location problem or the K-
median problem [17]. In the facility location problem, given a set of replica servers (”locations”)
i where one can place a replica (”facility”), placing a replica at location i incurs a cost of fi.
Each client j must be assigned to one replica, incurring a cost of djcij where dj is the demand
of the node j, and cij the distance between i and j. The objective is to find the number and
locations of the replicas such that the total cost is minimized. The K-median problem is like
the facility location problem. Only there are no costs for placing replicas. Instead, the number
of replicas that can be placed is bound to K.
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However, such solutions can be computationally expensive. This makes it hard to apply
them, as placement algorithms are run often. Therefore, simpler solutions are used by existing
replica hosting systems.

In [6], Chen et al. propose a dynamic replica placement algorithm. The goal is to minimize
the number of replicas when meeting clients’ latency and servers’ capacity constraints. For
each document, the replica servers holding a replica are organized into a load-balanced tree
with the origin server as root. The algorithm takes as input client requests together with their
associated latency constraints. These requests are sent to the origin server, which services the
request if the client’s latency constraints and the origin server’s capacity constraints are met.
Otherwise, the algorithm searches for another server in the tree that satisfies both constraints
and creates a replica at that server. The algorithm is good in terms of preserving client latency
and server capacity constraints. However, it has considerable overhead caused by checking QoS
requirements for every client request. In the worst case a single client request may result in
creating a new replica. This can significantly increase the request servicing time.

In [11], Kangasharju et al. model the replica placement problem as an optimization problem.
The goal is to place K objects in some of N servers, in an effort to minimize the average number of
inter-AS hops that a request must traverse to be serviced. However, the problem is NP-complete,
so finding an optimal solution is not feasible. Therefore, they propose three heuristics. In the first
heuristic, each node sorts the objects in decreasing order based on popularity among its clients.
Each node stores as many objects in this order as the storage constraint allows. Unfortunately,
when placing a replica of a document, the presence of other replicas of this document is not
considered. In the second heuristic, a server takes besides the popularity of the document also
the server’s distance to the origin server into account. Still, replicas at other replica servers are
not considered. The third heuristic uses a global replication strategy. For each server/object
pair, a cost is calculated based on the document’s popularity, the shortest distance between the
server and a copy of the object, and the total request rate of the server. Every iteration the
server/object pair with the best cost is selected and that object is placed on that server. An
iteration ends with recomputing the shortest distances between each server and each document.
The algorithm iterates until all the replica servers have been filled. This heuristic outperforms
the two other heuristics. However, it has a high computational complexity.

In RaDaR [18], Rabinovich et al. run the replica placement algorithm on each replica server.
A replica server collects access statistics for all of its documents. The algorithm deletes a replica
when its request rate drops below deletion threshold U and it is not the sole replica in the system.
If the request rate is above U , the algorithm migrates the document to a replica server located
closer to clients that issue more than half of the requests, to improve client server proximity.
The algorithm calculates the distance using preference paths. A preference path is a RaDaR-
specific metric that is computed by the servers based on information periodically extracted from
the system’s routers. Finally, in case migration fails, when the request rate of the document is
greater than replication threshold M (with M > U), the algorithm creates an additional replica
on another server.

In SPREAD [20], replica servers periodically calculate the expected number of requests for
every document. If the number of requests exceeds a certain threshold, servers decide to create
a local copy of the document. They remove a replica if its popularity decreases. If required, the
total number of replicas of a document can be restricted by its owner, by using a hop-counter
which gets decremented at every replica server where a replica is created. When the counter
reaches zero, no more replicas are placed.

These solutions are not optimal, but still have a large computational cost. Some of them
require gathering client access information and computation of request rates for all documents.
Furthermore, it can be hard to control the number of replicas. This makes it difficult to determine
the degree of fault tolerance.

This thesis proposes a different and simpler solution: place replicas at K randomly selected
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servers. This placement algorithm does not take client or network conditions into account when
replicas need to be placed. It just selects a random server, possibly considering server constraints
like server load or storage capacity.

Placing the replicas at random replica servers makes sense in the case of our system, as the
selection of servers that form the replica hosting system is generally done in such a way that
clients can be serviced well. Server locations are selected that are good for hosting replicas of
many objects. When we place replicas at servers selected in a random manner, it is likely that
we place these replicas in several parts of the system. Provided that K is high enough, this
makes it unlikely that there are clients that do not have a replica reasonably nearby.

An advantage of this solution is its simplicity. There are no computational costs, we only
need a random function. Therefore it is easy and fast. Furthermore, we do not need any
gathering of client access information. The most important advantage is that this solution
makes decentralization possible. The origin server just has to insert documents and updates
and can be assumed unavailable for the rest of the time. The replica servers can handle placing
the replicas. A problem that we need to solve when using random placement is locating replicas.
We discuss this problem in the next chapter.

2.3 Consistency enforcement

Having multiple copies of a document introduces a consistency problem. When one updates a
copy of a data item, all the other copies have to be destroyed or brought up-to-date as well to
prevent clients from retrieving stale data.

Consistency can be enforced using various consistency models depending on the requested
consistency requirements. A consistency model dictates the consistency-related properties of
documents delivered by the system to its clients. A consistency model can be implemented
using various consistency policies. A consistency policy defines how, when and to which replicas
the various content distribution mechanisms are applied. A content distribution mechanism
defines how and when replica servers exchange the replica updates.

Section 2.3.1 discusses the various consistency models, where section 2.3.2 gives an overview
of content distribution mechanisms.

2.3.1 Consistency models

Consistency models dictate the consistency-related properties of documents delivered by the
system to its clients. Consistency models differ in how strict they are in enforcing consistency.

Coherency is the strongest form of consistency. We consider a system to be coherent when
all copies of a document in the system are identical at all times, even in the case of updates.
Coherency is not possible in distributed systems. First, in distributed systems one faces trans-
mission delays: it takes some amount of time (unbounded) before updates are disseminated to
replica servers. Furthermore, even when one first spreads an update to all replica servers before
updating a document, it is very hard to synchronize these servers in order to apply the update
at the same time.

It is therefore impossible to define consistency with respect to the state of the application.
Consistency models thus define properties in the perspective of clients. Strong consistency means
that when clients request documents the system behaves as if it was coherent. This does not
mean that the system is coherent: a replica that is different from others, for example because
the copy at the origin server is updated, must simply be destroyed or otherwise not be delivered
to clients until it is brought up-to-date. Strong consistency is seldom used in wide-area systems
due to high synchronization costs.

However, in many cases, strong consistency is not required. When one relaxes on the consis-
tency strictness, weak consistency can be applied. Weak consistency ensures that eventually all
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updates reach all replicas, possibly bounded by some time or order constraints. As weak con-
sistency is resistant to delays in update propagation and causes less synchronization overhead,
it fits better in wide-area systems.

Consistency models usually define consistency along three different axes: time, value and
order [30]. Order-based consistency models are generally used in replicated databases. In these
models, replicas can differ only in the order of execution of write operations according to certain
constraints, e.g. a maximum number of out-of-order operations. However, they need to to
timestamp and exchange operations among all replicas. These models are mostly useful to
support concurrent distributed updates.

Value-based consistency models [1] are based on the assumption that each replica has an
associated numerical value that represents its current content. They define consistency as the
numerical difference between two replicas. These models ensure that the difference between the
value of a replica and that of other replicas is no greater than a certain threshold. Value-based
consistency models can be applied to documents with a precise definition of value, e.g. a Web
document containing the current stock rates. Unfortunately, for regular Web documents it can
be hard to obtain such a value.

Time-based consistency models [25] define consistency based on real time. These models
require a content distribution mechanism to ensure that an update to a replica is visible to the
other replicas and clients after a maximum acceptable threshold of time. An advantage of this
kind of models is that they are applicable to all kinds of documents and independent of the
document’s semantics. Alex [5] is a global file system that uses a time-based consistency model
for maintaining consistency of FTP caches. The consistency policy in this system guarantees
that the only updates that might not yet be reflected on a replica server are the ones that have
happened in the last 10% of the reported age of the file.

The goal of this thesis is to propose a replication policy that implements best-effort weak
consistency. It adopts a time-based consistency model and ensures that updates are spread in a
reasonable limited time interval after an update takes place at the original document. During
this time interval the updated document is available for clients, although clients may access stale
data. Therefore, we strive to keep the update dissemination time as low as possible.

2.3.2 Content distribution mechanisms

Content distribution mechanisms define the exchange of replica updates. They differ on two
aspects: the form of the update and the direction in which updates are triggered. The decision
for these two aspects is a tradeoff between the degree of consistency one wants to achieve and
the communication overhead it introduces.

Replica updates can be transferred in three different forms: state shipping, delta shipping and
function shipping. State shipping is the simplest form, just the whole replica is sent. When one
uses delta shipping, only differences with the previous version are transmitted. With function
shipping, only the operations that cause the changes are sent.

The advantage of delta and function shipping is that they can incur less communication
overhead compared to state shipping, as only the actual changes are sent, respectively the size of
the description of the operations is usually independent from the object state and size. However,
it requires each replica server to have the previous replica version available. Furthermore, delta
shipping assumes that the differences between two document versions can be quickly computed,
which can be become difficult for regular documents. Finally, function shipping forces the replica
servers to be able to perform a, possible computationally demanding, operation.

Although state shipping can incur significant communication overhead, especially when a
small update is performed on a large document, there are no complex computations needed.
Even more important, it does not require replica servers to have the previous replica version
available. This makes the replication policy more flexible as updates can be placed on replica
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servers that do not have a copy of the document yet without generating communication overhead
caused by retrieving the previous version. This is an important property in order to make the
replication policy decentralized as we explain in the next chapter.

The update transfer can be initiated by the replica server that needs a new version, a pull,
or by the replica server that holds the new replica version, a push. Furthermore a combination
of both mechanisms can be used.

With a pull-based approach, the replica server determines when to fetch a new version of a
document from its origin server. This has the advantage that origin servers do not have to store
state information, which leads to higher fault tolerance. However, replica servers have to estimate
when to pull an update. A replica server can check on every client request for a document if
the origin server has a newer version. If so, the origin server returns the new version, else just a
header stating the replica is still up-to-date is returned. This approach has the advantage that
strong consistency is possible. Unfortunately, it can incur large communication overhead as the
origin server has to be contacted for each request even if the replica is still valid.

In another approach, the replica server computes a Time To Refresh (TTR) attribute for
each of its documents, which denotes the next time the document should be validated. The
value of TTR can be a constant, or can be calculated from the update rate of the document.
It may also depend on the system’s consistency requirements. Rapidly changing documents or
stringent consistency requirements require a small TTR, whereas documents with infrequent
changes or less stringent consistency requirements can have a larger TTR. However, enforcing
stricter consistency depends on careful estimation of TTR: small TTR values provide good
consistency, but at the cost of unnecessary transfers when the document was not updated.

One can also combine both approaches: only after the TTR value expires, validity checking is
performed. Although this incurs less communication overhead, strong consistency is not possible
and good estimation of the TTR attribute is still important.

The push-based scheme ensures there is only communication when there is an update. This
way, one can provide strong consistency without introducing the communication overhead from
the validity checking approach: since the origin server is aware of changes, it can precisely
determine which changes to push and when. However, the replica server initiating the update
transfer needs to keep track of all replica servers to be informed, but it has been shown that
storing this list can be done in an efficient way [4]. A more important problem is that the
origin server becomes a single point of failure, as the failure of this server affects the system’s
consistency until it is recovered.

A disadvantage of the push approach is that the origin server has to keep track of all replica
servers to be informed. This thesis proposes a replication policy where the origin server can
just insert a new (version of a) document into the system and disconnect from the system. The
origin server does not have to store state information. It only has to know the addresses of some
arbitrary replica servers in the system to which it can send the documents and updates.

In [3], Bhide et al. propose a couple of schemes where push and pull are combined. In
one scheme they use push and pull simultaneously to achieve advantages of both approaches.
Another scheme adaptively chooses between push and pull depending on the data change rate,
client requirements or resource availability. A more suitable way of combining push and pull
for our replication policy is to allow the former to trigger the latter. This can be done using
invalidations. A document’s origin server pushes invalidations to a replica server. They inform
the replica server that the replica it holds is outdated. Then, the replica server can decide to
pull the new version from the origin server. In the proposed replication policy, the origin server
can insert the invalidation into the system. The replica servers take care of disseminating the
invalidation. A replica server that needs the new version can pull it from the origin server,
but also from replica servers that have obtained a copy. In this approach the origin server can
disconnect after the update is fetched at least once.
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2.4 Request routing

When a client issues a request for a certain document, the request needs to be routed to a copy
of the requested document. To accomplish this, one first has to select a server that handles the
request. There are two possible server selection approaches: the server is selected out of (a subset
of) the K servers that possess a replica of the requested document, or the server is selected out
of (a subset of) all the N servers in the replica hosting system. In the former approach, one
has to determine which (subset of the) K servers have a copy of the requested document before
selecting one of them. This requires that one has to identify at least one server that has a copy
of the requested document. This approach can be useful when identifying replica servers with a
certain document copy is easy. In the latter approach, one can select a server out of (a subset
of) all the servers in the system. With this approach no identification of servers possessing a
copy of the requested document is needed. However, when the selected server does not have a
local copy, this server has to find one. This approach may be useful when identifying replica
servers with a certain document copy is hard. However, one should be able to locate replicas in
an efficient way. We discuss locating replicas in the next chapter.

After the selection approach is chosen, one has to select one (or more for fault tolerance
reasons) server that should handle the client request. There are two possible policies for selecting
the server: non-adaptive and adaptive. In non-adaptive policies, current system conditions are
not considered when selecting a server. Instead, they exploit heuristics based on assumptions
of system conditions. The advantage of these policies is that they are easy to implement. A
disadvantage is that these policies only work when the assumptions made by the heuristics are
met.

In adaptive policies, current system conditions, e.g. server load, client-server distance and
end-to-end latency, are considered when selecting a server. The advantage is that they are able
to adapt their behavior to changing situations. However, they achieve this at the cost of a higher
complexity. Selecting a server selection policy is a task of the replica hosting system. When
system conditions are monitored, the system can decide to use these when selecting a server for
handling a client request.

Finally, when a server is selected, one has to inform the client about the selected server
to which it is redirected. This can be done using non-transparent, transparent or combined

mechanisms. Non-transparent mechanisms reveal the redirection to the clients. They can be
implemented with HTTP. An advantage is that these mechanisms are easy to implement. How-
ever, they introduce an explicit binding between a client and a given replica server. Transparent
mechanisms perform client request redirection in a transparent manner. These mechanisms can
be based on DNS. They do not introduce explicit bounds between clients and replica servers,
even if the clients store references to replicas. However, they have poor client identification and
coarse redirection granularity. One can also combine transparent and non-transparent mecha-
nisms to achieve better results. Like the server selection policy, the inform mechanism is a task
of the replica hosting system.

2.5 Availability

In a distributed system failures can occur. Replicas can become unavailable because of failing
replica servers, or become unreachable because of network failures. Systems such as Akamai
assume that a significant and constantly changing number of components or other failures occur
at all times in the network [1]. Consequently, the system must be designed such that Web content
can be delivered successfully under these circumstances. An important principle Akamai uses
is redundancy, especially for DNS servers which direct end users to Web servers. It achieves
redundancy in DNS by introducing a two-layer approach combined with returning multiple IP
addresses. Furthermore, Akamai continuously monitors the state of services, and their servers
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and networks. This way it can detect failures quickly and make sure they do not affect clients,
e.g. by directing clients to other, correctly working servers.

In Globule [16] the origin server contains the authoritative version of all documents of its
site and normally should be reachable by other servers at all times. However, as the origin
server cannot be assumed to be always available, Globule uses one or more backup servers to
guarantee availability of the site. These backup servers maintain a full up-to-date copy of the
hosted site. When the origin is unavailable, one available backup server is sufficient for the
site to work correctly. The goal of replica servers is not increasing availability but maximizing
performance. In the worst case a failing replica leads to increased response times. Even when
all replica servers fail, the requested document can be found at the origin or one of the backup
servers. Globule monitors the availability of origin, backup and replica servers to avoid directing
a client to an unavailable server.

Decrepol does not need a backup server for availability. Instead, it spreads all documents of
the origin server across the replica servers. When a replica server does not have a local copy of
a document it knows where to fetch it. Failing replica servers lead to decreased performance.
As long as at least one copy of each document of the site remains available the site is available.
Therefore, the replication degree of the documents dictates the degree of availability. In case
the origin server fails, we cannot insert new documents or updates into the system, but it does
not affect fetching documents currently in the system.

In Decrepol, when a replica server recovers from a failure one can distinguish two cases: the
server has no state or it does have a state. In the first case, the replica server is the same as
a joining server. It just has to announce its presence and ask for replicas. In the other case,
the replica server may contain stale documents as it may have missed some updates during the
period it was unavailable. Therefore, it should make sure it fetches the missing updates and
brings its documents up-to-date. We discuss these issues at length in Section 2.3.

2.6 Replication policies in Globule

In Globule [16] the origin server contains the authoritative version of all documents of its site, and
is responsible for distributing contents among other involved servers. Backup servers maintain a
full up-to-date copy of the hosted site and guarantee the availability of the site. Replica servers
contain only a partial copy of the site and their goal is to maximize performance.

Globule supports multiple replication policies. With proxy there is no creation of replicas at
all. All replica servers forward their requests directly to the origin server. With ReplNoCons the
origin server creates replicas at replica servers and keeps it there forever without checking. This
policy is obviously useful only in a few extremely specific cases. TTL allows a replica server to
deliver a copy to a requester without any consistency check during a fixed amount of time t since
a fresh copy has been fetched. If the period has expired a consistency check is required. Alex

is basically the same as TTL, but uses a variable amount of time a after which a consistency
check is required. The amount of time can be varied according to for example the update rate
of a document, as highly updated documents require a shorter validation time.

TTL and Alex allow a bounded inconsistency whereas our goal is to minimize it. When
applying Invalidation for a certain document, replica servers owning a copy of this document,
register at the origin server. The origin server sends a message to all registered replica servers
when the document is updated so that they drop their outdated copy. This however creates
problems if certain replica servers are unavailable at the time of a document update. When a
replica server that is registered at the origin server becomes unavailable, the origin server cannot
send update messages to the replica server. However, when the replica server recovers it needs
the update messages it missed during the period it was down in order to update its documents.
As the origin server is responsible for delivering these update messages, it has to buffer the
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replica server’s update messages until the replica server becomes available again.
When the origin server is down, no updates can be inserted to the system. Furthermore,

when a replica server needs a document it does not have locally, the replica server needs to
contact the backup server for it. The replica server cannot register at the origin server for this
document until the origin is available again. The backup server usually delivers the document
using TTL. Another option is to let the replica server register at the backup server. However,
the backup server needs to forward all its registrations to the origin server when it becomes
available again.

An important feature of Decrepol that the previous replication policies do not support is
that it allows the origin server to be unavailable most of the time. Furthermore, the replica
servers organize themselves such that there is at least one copy of each document among them,
possibly more for fault tolerance or performance reasons. Replica servers that do not have a
local copy of a document know where they can fetch it. The main advantage of this approach
is that the origin server only has to be available when an update needs to be inserted and can
be unavailable for the rest of the time. Therefore the origin server can be a laptop or PDA.
Furthermore, the origin server is no single point of failure. The replica servers are responsible
for spreading replicas and handling client requests in a distributed manner.
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Chapter 3

Related Work: Peer-to-Peer

This thesis proposes a decentralized replication policy where the replica servers need to organize
themselves such that the right number of replicas of a document is placed on the right replica
servers, they know where to fetch documents not possessed locally, and the replicas are kept
consistent. We only need the presence of the origin server when we have to insert a new document
or an updated version into the system.

These properties come close to those offered by peer-to-peer overlays: sharing computer re-
sources, decentralization, self-organizing, resilience to network and server failures. We therefore
decided to structure our replication policy following peer-to-peer architectures. Section 3.1 gives
an overview of peer-to-peer systems. Section 3.2 discusses unstructured peer-to-peer systems in
detail, thereby stating which of their properties can be used for our replication policy and which
issues they might introduce. Section 3.3 does the same for structured peer-to-peer systems.

3.1 Overview

Peer-to-peer systems are distributed systems with two defining characteristics: sharing of com-
puter resources (e.g. content, CPU cycles, storage and bandwidth) by direct exchange, rather
than requiring the intermediation of a centralized server, and the ability to treat instability and
variable connectivity as the norm, automatically adapting to failures in both network connec-
tions and computers, as well as to a transient population of nodes [2]. One can distinguish three
kinds of peer-to-peer systems.

The first is designed to efficiently support content-based searching. These systems often use
a centralized index server to facilitate interaction between peers by performing lookups and
identifying the nodes storing the files. An example of such a hybrid decentralized system is
Napster [14]. The advantage of such systems is that they are easy to implement and locate
files quickly and efficiently. However, they also introduce a single point of failure and therefore
are not scalable. This is something we want to avoid in the proposed replication policy, so
we need a more decentralized solution. Other peer-to-peer content-based searching systems
use supernodes as index servers. These nodes are dynamically assigned and assume a more
important role acting as local central indexes for files shared by local peers. Examples of this
kind of partially centralized systems include KaZaa [12] and Gnutella [8]. Supernodes may be
interesting as the network becomes large and can introduce a hierarchical structure to make
the system scalable. However, in this thesis we consider networks of only hundreds, maybe
thousands of servers.

The second kind of systems is based on epidemic protocols. The goal of these systems is
the rapid and efficient dissemination of information. A crucial element in an epidemic protocol
is that a participating peer can randomly select another peer to exchange information with.
Example systems include Newscast [10, 27] and CYCLON [26]. These kinds of systems are
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purely decentralized, i.e. all nodes in the network perform exactly the same tasks, acting both
as servers and clients, and there is no central coordination of their activities. The placement
of content is unrelated to the overlay topology. An advantage of these networks is that they
are easily maintained. However, as there is no correlation between content and nodes, content
typically needs to be located. This can be done by brute force methods such as flooding, but
such a solution can cause availability and scalability problems. Therefore a more sophisticated
location method is needed. We discuss peer-to-peer systems based on epidemic protocols in
Section 3.2.

The third kind uses a structured overlay network, i.e. the network formed on top of and
independently from the underlying physical computer network, for efficiently routing a request
to its destination. The overlay topology is tightly controlled and files are placed at precisely
specified locations. Examples of such systems include Chord [23], CAN [19], and Pastry [21]. All
structured systems are inherently purely decentralized as form follows function. An advantage
of structured systems is that they provide a scalable solution where queries can be efficiently
routed to the node with the desired content. On the other hand it can be hard to maintain the
structure required for efficiently routing messages in the face of a very transient node population,
in which nodes are joining and leaving at a high rate. We discuss structured peer-to-peer systems
in Section 3.3.

3.2 Unstructured peer-to-peer systems based on epidemic pro-

tocols

There are many epidemic protocols, but we discuss only a few of them. Our main focus is
on Newscast and CYCLON, as they form the basis of our full replication policy and of the
unstructured version of our partial replication policy. In addition we discuss some protocols
based on CYCLON, namely CYCLON-VICINITY, T-Man and Sub-2-Sub, as they offer solutions
for locating replicas that can be used in our partial replication policy.

The Newscast protocol [10, 27] is an epidemic protocol that combines information dis-
semination with efficient membership management in large, dynamically changing sets of au-
tonomous agents. Agents can join and leave at virtually no cost at all, and without affecting
the information-dissemination properties of the protocol.

Newscast is based on a collection of agents where each agent can provide news. Every
agent has an associated correspondent running on the same machine hosting the agent. All
correspondents together form a news agency responsible for spreading the news to all agents.
Figure 3.1 shows the overall architecture of Newscast. The definition of what counts as news is
application dependent. Each correspondent maintains a cache of at most c news items. When
a correspondent receives a news item from its agent, the former timestamps the item, adds its
network address to it, and subsequently adds the item to its cache. A news item consists of an
agent identifier and the actual news the agent provides. Correspondents periodically exchange
caches. This is done as follows. The correspondent asks for a fresh news item from its agent and
adds it to its cache. It selects randomly a correspondent by considering the network addresses of
other correspondents in the cache. The cache contains only a small subset of network addresses
of peers in the system. The correspondent sends all items in its cache and receives all cache
items from the other correspondent. After the exchange both correspondents pass the received
items on to their agent and add them also to their cache. Subsequently the correspondents keep
the c freshest items in their cache according to the timestamps.

An advantage of Newscast is the simple membership management protocol. When a node
wants to join the system, it just has to identify the network address of any arbitrarily chosen
correspondent and initialize its own cache with the one of that correspondent. Leaving the
system requires no action at all. A correspondent will be forgotten in a limited amount of time
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Figure 3.1: The organization of a Newscast application.

when it does not provide news items anymore. Therefore, Newscast is robust to node failures.
Another important advantage of Newscast is that it can disseminate information quickly to
all nodes in the system. Furthermore, there is no global synchronization required among all
correspondents. They just need to keep time consistent within a single cache, which can be
achieved by exchanging local time and modify timestamps of received items accordingly.

Newscast considers the latest news from an agent most important and the fresher the news
is the better. Old information is thrown away whenever a fresher item from the same source is
available. However, in a Web hosting system things are a little different. What is considered
most important is not the latest news item of an origin server (e.g. announce of a new document
or update), but the latest version of a document. This means that if we announce each new
version of a document in a news item, it should be possible for two news item of the same source
to be in a correspondent’s cache at the same time, otherwise, an origin server could only insert
a new item when the previously inserted news item has reached all necessary replica servers in
the system and can be removed from the caches.

Another problem when directly mapping a Web replication policy on Newscast might be
locating content. Newscast is about disseminating news to all nodes in the network. We can
consider announcing a new document or update as news. When we place this document on
all nodes in the network, as is the case with full replication, locating a copy is not an issue as
one can just ask an arbitrary node. However, in the case of partial replication only a subset of
the nodes in the network should store a copy of the document. When one requests a partially
replicated document from a server that does not have a copy stored locally, the server needs
to locate a copy by searching the system. Although Newscast tends to lead to small average
path lengths [27], when there is no correlation between documents and nodes, and the number
of replicas is relatively small compared to the number of nodes in the network, searching can
still become a complex task taking a lot of time and/or requiring a lot of communication and
thus bandwidth.

Another important disadvantage of Newscast is that it creates communication graphs with
a relative high clustering coefficient [27], which, for a given node, is the fraction of pairs of its
neighbors that are also neighbors of each other. This does not only weaken the connectivity of
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a cluster to the rest of the network, and therefore increasing the chances of partitioning, but is
also not optimal for information dissemination due to the high number of redundant message
deliveries within highly clustered parts of the network [26].

CYCLON [26] is a gossip-based protocol that looks very much like Newscast. However,
CYCLON differs in a few aspects from newscast. Firstly, nodes exchange only subsets of their
caches instead of whole caches. This requires less bandwidth without affecting the connectivity
of the overlay. Secondly, a node selects the node with the oldest timestamp in its cache to gossip
with instead of selecting a peer randomly. This way the time a pointer can be passed around
until it is chosen by some node for gossiping is limited, resulting in a more up to date overlay.
Furthermore, selecting the node with the oldest timestamp leads to a predictable lifetime of each
pointer and controls the number of existing pointers to a given node at any time. Finally, there
is a difference in deciding which items to keep after gossiping. CYCLON replaces, in case the
cache is full, sent items by received items, whereas Newscast nodes keep the c freshest items.

A disadvantage of CYCLON compared to Newscast is that the former requires a more
complex join operation. When a new node P wants to join the network, like in Newscast it has
to know any single node that is already part of the network, which we refer to as introducer.
However, instead of just initialize the cache of node P with the cache of the introducer, the
introducer initiates cache size c random walks of length at least equal to the average path
length. A node Q where a random walk ends replaces a random entry of its cache with a fresh
entry of node P . Furthermore, node P adds the replaced item of node Q to its cache. This way,
the cache of node P is not only filled with randomly chosen nodes in the network, but also the
number of references to P is equal to the cache size, and the number of references to the other
nodes in the network has not been modified. Random walks may fail because of node failures
or an unreliable network. Fortunately, a node can join by being involved in an exchange with a
single other node, although it takes some more rounds before its cache is full [26].

The main advantage of CYCLON is that it creates communication graphs with a lower
clustering coefficient than newscast does. The coefficient is practical equal to the clustering
coefficient of randomly created graphs. However, CYCLON does not solve the content location
problem.

In [29], Voulgaris et al. propose a two-layered approach to allow for searching based on
grouping semantically related nodes, as shown in Figure 3.2. The bottom layer is CYCLON.
CYCLON creates an overlay with completely random, uncorrelated links between nodes, and
feeds the top layer with random nodes to make sure the top layer adapts to changes in the
network, e.g. joining nodes and nodes with changed content. The top layer, VICINITY, is
dedicated to grouping semantically related nodes. Each node has a semantic view, which is a
dynamic list of semantic neighbors. A node first queries its semantically close peers before using
search methods that span the entire network. The goal of this system is to organize semantic
views so as to maximize the hit ratio of the first phase of the search. This approach is very
suitable for content-based searching. However, in a Web hosting system nodes generally do not
have such a semantic relation.

T-Man [9] is a protocol that can be used in large distributed systems for constructing and
maintaining different types of topologies in a gossip-based fashion. It uses a ranking function
that defines the topology by ranking nodes according to increasing distance from any given node.
The goal of T-Man is constructing and maintaining a target topology by connecting all nodes
in the network to the right neighbors according to the ranking function.

T-Man differs from Newscast and CYCLON in two ways. First, it selects a node for gossiping
by first applying the ranking function to order the items in the view and then select a random
item from the first half of the view instead of selecting from the view a completely random item
or the oldest item respectively. Second, after a node has exchanged items, it uses the ranking
function to order the items in the view, and instead of keeping the c freshest items, it keeps the
first c items according to the ranking function. Furthermore, T-Man feeds the protocol with
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Figure 3.2: The two-layered protocol.

Figure 3.3: A torus.

random nodes in the network using a service like CYCLON, in order to adapt to changes in the
network.

Using T-Man, we can construct the servers in a Web hosting system in a topology that
facilitates locating documents. We can create such a topology by assigning the servers a server
identifier, for example by hashing the server’s address, and selecting a certain ranking function.
We can also assign the documents an identifier, for example by hashing the document’s URL.
This way, we can create a correlation between servers and documents, where we place a document
at a server with an equal identifier or an identifier that is close to that of the document. When
one requests a document from a server that does not have the document stored locally, the server
knows it has to find a server with an identifier closer to that of the requested document. The
requested server can find such a server when we have constructed a suitable topology.

A suitable topology for searching purposes has a low diameter and includes hints on how to
get closer to the destination. A torus is an example of such a topology. It is a three-dimensional
figure that is the product of two circles as shown in Figure 3.3. One can create it from a mesh
where the opposite edges are connected in both horizontal as vertical direction.

Sub-2-Sub [28] is a content-based publish/subscribe system. In such a system subscribers
express their interest in data by registering subscriptions. Subscriptions are represented by
arbitrary predicates on attributes. Publishers notify subscribers of events matching their sub-
scriptions.

Sub-2-Sub uses VICINITY to automatically cluster subscribers with similar interests. Once
subscriptions are clustered, Sub-2-Sub sends events directly to the matching cluster where they
are efficiently disseminated. It uses CYCLON to discover new nodes and to keep the overlay
connected in a single partition. Finally, to make sure all interested subscribers receive an event,
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it organizes subscribers that have the same interest in bidirectional rings.
The main difference with Web hosting systems is that in publish/subscribe systems servers

where data needs to be routed to, express their interest in the data. In Web hosting systems,
replica servers do not express their interest, instead the goal is to find a suitable set of replica
servers to store the replicas of a document. However, when we can distinguish a server P where
a replica needs to be placed, by using identifiers for both documents and servers as explained
before, and a suitable topology is created using T-Man, then like in Sub-2-Sub Vicinity can be
used to spread the replicas across servers with an identifier close the identifier of node P .

However, when we use identifiers for both documents and servers as explained before, we
can distinguish a server P where we need to place a replica. Furthermore, when we create a
suitable topology using T-man, we can locate this server. Finally, we can use Vicinity to spread
the replicas across servers with an identifier close to the identifier of node P .

3.3 Structured peer-to-peer systems

There are many structured peer-to-peer systems acting as distributed hash tables. We discuss
only a few of them. Our particular attention is focused on Chord, as it forms the basis of our
structured partial replication policy, and CFS, which is a storage system based on Chord. In
addition we briefly discuss CAN and Pastry and point out the main differences of these systems
with Chord.

Chord [23] is a peer-to-peer lookup protocol. It acts as a distributed hash function mapping
keys onto nodes. Such a node might be responsible for storing a value associated with the key.
Chord uses consistent hashing [13] to assign keys to nodes. An advantage of consistent hashing
is that it tends to balance load as each node is assigned roughly the same number of keys.
Another advantage is that the number of keys that are reassigned to other nodes when a node
joins or leaves the system is small: a O(1/N) fraction of all the keys in the system is reassigned
when an Nth node joins or leaves the system.

In Chord, the routing table is distributed, so each node needs to store information about
only a few other nodes, namely O(logN). That information is needed for efficient routing, but
performance degrades gracefully when that information is out of date. In the worst case, only
one piece of information per node needs to be correct in order to guarantee correct routing of
queries. Chord automatically adjusts its internal tables to reflect newly joined nodes as well as
node failures.

The consistent hash function assigns each node and each key an m-bit identifier. A node’s
identifier is chosen by hashing the node’s IP address, whereas a key identifier is produced by
hashing the key. Identifiers are ordered on an identifier circle modulo 2m. Key k is assigned to
the first node whose identifier is equal to or follows the identifier of k in the identifier space.
This node is called the successor node of key k. Figure 3.4 shows an identifier circle with m = 6,
consisting of ten nodes storing five keys. In Chord, each node maintains a routing table with up
to m entries, called the finger table. Each node stores information about only a small number of
other nodes, and knows more about nodes closely following it on the identifier circle than about
nodes farther away. More precisely, each node has finger table entries at power of two intervals
around the identifier circle. Figure 3.5 shows the finger table entries for node 8. A node’s finger
table generally does not contain enough information to directly determine the successor of an
arbitrary key k. Therefore, a node needs to communicate with other nodes in order to perform
a lookup.

A lookup of key identifier id by node n consists of finding the successor node of id. If id
falls between n and its successor, n’s successor is also the successor of id. Otherwise, node n
asks the node p in its finger table whose identifier immediately precedes id to find the successor
node of id. The reason for this choice is that the closer p is to id the more it will know about
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Figure 3.4: An identifier circle consisting of ten nodes storing five keys.

Figure 3.5: The finger table entries for node 8.
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Figure 3.6: The lookup of key 54 starting at node 8.

the identifier circle in the region of id. Since each node has finger table entries at power of two
intervals around the identifier circle, each node can forward a lookup query at least halfway
along the remaining distance between the node and the target identifier. A lookup requires
O(logN) messages in an N -node network. Figure 3.6 shows the lookup of key 54 starting at
node 8.

When we map our replication policy on Chord, we need to associate a key with each Web
document, for example by hashing its URL. Then we can place a document on the successor
node of its key. In Chord, nodes can maintain a successor list containing the node’s first r
successors in order to increase robustness. If a node’s immediate successor does not respond,
the node can contact the next successor in the list. We can use this successor list mechanism
to store multiple replicas of a document in the system, by storing replicas of a document on the
first k successor nodes of the associated key.

When a node n joins the network it asks an arbitrary node in the network to find the
successor of its identifier, and stores this information in its routing table. Furthermore, certain
keys previously assigned to n’s successor now become assigned to n. For our replication policy
this means that we need to transfer the documents associated with these keys to their new
successor node. A stabilization protocol that runs periodically updates finger table and successor
entries to ensure lookups execute correctly as the set of participating nodes changes. When node
n leaves the network, all of its assigned keys are reassigned to n’s successor. This means for
our replication policy, that when a node is about to leave, it can transfer its documents to its
successor and notify its predecessor before leaving.

The main advantage of Chord is its efficient location of data items, and the fact that lookup
operations run in predictable time and always result success or definitive failure. However,
mapping a Web replication policy directly on Chord introduces a number of issues that need to
be solved. The first issue is maintaining consistency of the replicas, especially in the presence of
failures. Secondly, Chord does not support load balancing between replicas in the successor list.
Currently, it always contacts the first successor. In case this successor is unavailable, it selects
the next one. The last issue is routing table maintenance in the presence of joining and failing
server, and its effect on lookups.

21



The Cooperative File System (CFS) [7] is a peer-to-peer read-only storage system based on
Chord. A CFS file system is read-only from the client’s perspective, but the owner of a file
system can update it. CFS stores file blocks instead of full documents, so documents can be
spread over multiple servers in the system. This prevents large files from causing unbalanced use
of storage. CFS uses Chord to locate the servers responsible for a block. This way, it can achieve
load balance by spreading the blocks of popular large files over many servers. CFS replicates
each block at a small number of servers to provide fault tolerance.

CFS places a block on its successor node. Furthermore, it places replicas of the block at
the k servers immediately after this successor node on the Chord ring. The successor node is
responsible of making sure that k of the successors in its r-entry successor list have a replica of
the document. Therefore, CFS must be configured so that r ≥ k. However, when a document
has a high number of replicas, the successor list becomes large.

CAN [19] is also a distributed hash table mapping keys onto nodes. The main difference with
Chord is that CAN uses a d-dimensional Cartesian coordinate space. Each node maintains O(d)
state, namely its immediate neighbors in the coordinate space. The lookup costs are O(dN1/d).
Thus, the state maintained by a CAN node does not depend on the network size N , but lookup
costs increase faster than logN . Furthermore, CAN requires an additional maintenance protocol
to periodically remap the identifier space onto nodes.

In contrast with Chord, Pastry [21] takes the network topology into account to reduce routing
latency. However, it achieves this at the cost of a join protocol that initializes the routing table of
the new node by using the information from nodes along the path traversed by the join message.
As network proximity is out of the scope of this thesis and Chord can be adjusted to include
the network topology [7], Chord seems a more suitable candidate for our replication policy than
Pastry.
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Chapter 4

A Full Replication Policy

This thesis presents a decentralized replication policy for Web documents that allows for con-
trolled partial replication. However, such a replication policy is quite complex. Therefore, we
first discuss a simpler replication policy that achieves full replication, i.e. the replicas of a Web
document are spread across all replica servers in the system. Full replication is a special case
of replication where the number of replicas is equal to the number of replica servers. The main
issue for a full replication policy is to make sure all replica servers have an up to date copy of all
documents in the system. We can use the solution for this problem as the base of a replication
policy that achieves a more general form of replication, which we refer to as partial replication.
With partial replication, the replicas of a Web document are spread across k replica servers in a
network with N nodes and 0 < k ≤ N . The partial replication policy has to deal with a number
of additional issues, such as locating a replica in case of a document request to a replica server
that does not have the document stored locally, and inserting the exact number of replicas in
case the number of replicas is smaller than the number of replica servers. The next chapter
introduces a replication policy that achieves partial replication.

The main goal of the full replication policy is to make sure all replica servers have an up to
date copy of all documents in the system. As discussed in Section 2.3 about consistency, with
up to date we mean that the propagation delay of a document update to all replicas remains
within reasonable limits. As also discussed in the consistency section, we accomplish this form
of consistency using invalidation. The origin server puts an insert notification into the system
announcing a new document or a document update. The main challenge for the full replication
policy is to spread the insert notification across all replica servers in an efficient and decentralized
way. These requirements are very similar to the properties of epidemic protocols discussed in
Section 3.2. Therefore, we structure the full replication policy following epidemic protocols as
these protocols have the property of rapid and efficient dissemination of information.

Section 4.1 describes the problems we need to solve when we structure our full replication
policy following epidemic protocols. Section 4.2 presents the performance evaluation of our
policy and Section 4.3 concludes.

4.1 The problem

We base our full replication policy on CYCLON [26]. We choose CYCLON over Newscast [10],
as the former creates communication graphs with a lower clustering coefficient, which is good for
the connectivity of the overlay and decreases the probability of redundant message delivery (as
discussed in Section 3.2). CYCLON also takes care of membership management and of keeping
the overlay connected by means of gossiping, i.e. all servers periodically exchange subsets of their
caches containing server identifiers of other servers in the network, with a server also selected
from their caches. We just need to add to CYCLON a way to spread the insert notifications,

23



similar to the way Newscast spreads news. Using the Newscast method a gossip item would
contain an insert notification in addition to the agent identifier of the agent inserting the news
and a time stamp. However, Newscast considers the latest news item of an agent most important
and older items of the same agent are simply dropped. Thus a cache can contain only one news
item per agent at the same time. In a Web hosting system this would mean an origin server can
insert only one insert notification at a time. Even worse, we can insert the next notification only
after the previous one has reached all replica servers. Certainly, this is not an ideal situation.

A solution to this problem is to decouple the insert notifications from the server identifiers and
treat them as separate news items. So, a cache contains server identifier items for membership
management and keeping the overlay connected, and insert notification items for spreading
the information about a new document or document version. Decoupling also means that the
replication policy can use different strategies to spread the two types of news.

Other issues we have to deal with are about the gossiping. The gossip framework consists of
seven steps:

1. Select server P .

2. Select items to send.

3. Send selected items to P .

4. Receive items from P .

5. Handle received items (fetching corresponding documents).

6. Add received items to cache.

7. Select items to keep in cache.

One has to select a server to gossip with, decide which items to send and then actually
send the chosen items. When the selected server receives the items from the gossip initiator,
it also selects items and sends them back to the gossip initiator. After the exchange, both
servers handle the received items, which means fetching a document upon receiving an insert
notification of a document (version) not yet locally stored. After adding the received items to
the cache, the cache may contain more elements than the cache size c allows. The gossip ends
with deciding which c items to keep in the cache. The three main elements of spreading the
insert notifications are therefore server selection, selecting items to send, and selecting items to

keep.

4.1.1 Server selection

First, a server has to select another server from its cache to gossip with. CYCLON chooses
the oldest server identifier available in the cache. This way, it selects a server that has not
been contacted recently, which increases the probability of receiving new information. Another
advantage is that server identifiers have a limited lifetime. This means that CYCLON selects
server identifiers in a cache after a limited time interval, and server identifiers of failing servers
do not remain in caches for an unpredictable time. Another option is to select a server randomly
from the cache. However, this way no guarantees can be given over the time it takes before a
server in a cache is selected for gossiping.

4.1.2 Select items to send

The second element of spreading insert notifications is selecting the items from the cache for
gossiping. The gossiping involves two kinds of items: server identifiers (for keeping the network
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connected and handling membership management), and insert notifications (to spread informa-
tion about a new document or update to all replica servers). CYCLON does not exchange all
server identifiers in cache. Instead, it selects a subset of g server identifiers. This generates
less traffic and thus requires less bandwidth. Furthermore, it is not necessary to exchange all
server identifiers in order to keep the overlay network connected. The subset of server identifiers
consists of the identifier of the server initiating the gossip and g − 1 randomly chosen server
identifiers from its cache. The other gossip partner selects g random server identifiers.

Selecting all insert notifications from the cache will generate a lot of traffic and thus can
require quite some bandwidth. Therefore, we choose only a subset of g insert notifications. A
simple solution is to randomly select g insert notifications. This way all insert notifications have
an equal probability of being selected. However, older insert notifications may be less interesting
as they might have been selected before, or have reached (almost) all replica servers. Therefore
it seems worthwhile to choose newer insert notifications over older ones.

However, if one always selects the g newest notifications, it will be harder for notifications to
reach all replica servers, because the servers may start selecting newer notifications for gossiping
before the older ones have reached all replica servers. On the other hand, if one selects the g
oldest notifications, it will be harder for newer notifications to spread, which may lead to an
increased dissemination time. A better solution might be to give newer insert notifications a
higher probability to be selected than older ones. Section 4.1.4 discusses a couple of probability
functions that we can use to achieve this. Furthermore, we compare them against each other
and against random selection.

4.1.3 Select items to keep

The last element is deciding which items to keep in the cache after a gossip. After a gossip, a
server has received some new items (both server identifiers and insert notifications), therefore
the number of items in the cache may exceed the cache size c. A server has to decide which
items to keep in the cache. In CYCLON, a server always removes identifiers pointing to its self
and duplicate identifiers. If the cache size is still exceeded, it removes sent server identifiers. So
in practice the received items replace the sent ones. This is done in order to control the number
of references to servers. Another possibility is to keep the c freshest identifiers in cache.

We can also replace sent insert notifications by received ones. However, this may lead to
migrating notifications from server to server instead of replicating, and replication leads to
a higher dissemination speed. Another option is to keep the c freshest insert notifications.
However, insert notifications may be removed from caches before reaching all replica servers.
A better solution might be to give newer notifications a higher probability of being selected to
remain in the cache than older notifications. Section 4.1.4 discusses a number of probability
functions that we can use for selecting notifications to keep in the cache and we compare them
against each other and against random selection.

4.1.4 Probability functions

Two important elements of spreading the insert notifications across all replica servers are select-
ing items to send and selecting items to keep in the cache after a gossip has taken place. We can
use a probability function in order to give newer insert notifications a higher probability of being
selected for sending. The first function, called AGE, is based on the age of the insert notifica-
tions, giving younger insert notifications a higher probability of being selected. The probability
of a notification nx to be selected is:

P (nx) =
1

age(nx)∑c

i=1
1

age(ni)

with nx, ni ∈ updates in cache and cache size c.
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Figure 4.1: Probability functions.

Figure 4.2: Cache with insert notifications sorted on age.

The second function, AGE2, is similar to AGE, but it is based on age2 instead of age. This
gives younger insert notifications an even higher probability of being selected compared to the
previous function. The probability of a notification nx to be selected is:

P (nx) =
1

age2(nx)∑c

i=1
1

age2(ni)

with nx, ni ∈ updates in cache and cache size c.

In the last function, LINEAR, the probability for a notification of being selected decreases
linearly with the age of the notification. Figure 4.1 shows the probability graphs of the three
functions for the cache shown in Figure 4.2. It also shows the probability graph of random
selection. When we use random selection, the probability of being selected is equal for all
notifications.

We can also use a probability function in order to give newer insert notifications a higher
probability of being kept in cache after a gossip. We use the same functions as for selecting
items to send.

4.2 Performance evaluation

We ran our experiments on a simulator implementing the full replication policy. It simulates
128 replica servers and an origin server. Before we insert any documents into the system, the
simulator runs a warm-up phase in order to fill the caches with server identifiers and to create
a connected overlay. In the warm-up phase, we fill up the caches with random server identifier
of servers in the network. This creates a random overlay network and has the same result as
performing the join operation of CYCLON that we discussed in Section 3.2. Furthermore, we fill
the insert notification part of the caches by inserting enough warm-up documents to fill up the
caches. A server identifier contains an address in order to contact the server, and a timestamp
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that indicates its freshness. An insert notification contains the name of the document to be
inserted and its last modification date.

We set the initial value of the cache size to 20 for both server identifiers and insert notifi-
cations. The gossip length, which is the number of items that are selected for gossiping, is set
to 3 for both items. We insert a document into the system by adding a corresponding insert
notification to the cache of the origin server. When a server needs to fetch the corresponding
document of an insert notification, the server fetches it from the gossip partner that sent the
insert notification. We assume a replica server can retrieve a document within one gossip round.
During a gossip round, each server initiates one gossip. We run all experiments 20 times and
we use the median of these experiments as results.

4.2.1 Select items to send (infinite cache size)

We first want to determine the best function for selecting insert notifications to send. Therefore,
we start with an experiment where we use the four probability functions: RANDOM, LINEAR,
AGE and AGE2. We do not use a select items to keep function yet and therefore use a cache
with an infinite cache size. Only duplicate insert notifications are removed from the cache after a
gossip. After the warm up phase, we insert a document and another one 50 rounds later. We are
interested in how many rounds it takes before the documents are fully spread across all replica
servers. We expect that the three probability functions that give newer insert notifications a
higher probability to be selected than older ones, perform better than the RANDOM function.
First, older notifications in a cache might have been selected for gossiping before and may have
reached (almost) all replica servers. Second, new notifications are often selected for gossiping
and thus might have been fully spread before newer notifications are inserted into the system.

Figure 4.3 shows the median of how many rounds the two insert notifications take in order
to reach all replica servers for the four select to send probability functions. We see that, as we
expected, the RANDOM function performs worst. It takes 39 rounds for an insert notification
to reach all replica servers. The LINEAR function performs almost twice as fast with 21 rounds.
The results of AGE and AGE2 are almost equal. They outperform the two other functions:
an insert notification needs only 5 rounds in order to be fully spread. It therefore seems that
functions AGE and AGE2 are the best candidates for selecting items to send when we use caches
with an infinite size.

4.2.2 Select items to send (finite cache size)

Next, we want to determine the influence of a finite cache size on the number of rounds it takes
for replicating documents to all replica servers. We select the simplest select items to keep
function RANDOM. After the warm up phase, we insert 80 documents, one every five gossip
rounds. We also conduct an experiment where we insert a document every two rounds, in order
to see whether a higher insert frequency influences the performance of the select items to send
functions. We should achieve a lower dissemination speed than with the previous experiment
for two reasons. First, caches might drop notifications before they have reached all replicas.
Second, there is more competition between notifications in getting selected, especially when we
insert notifications every two rounds. Note that relatively frequent insertions are realistic with
respect to common access patterns to Web sites, as document updates are quite bursty and can
occasionally happen at reduced time intervals.

Figure 4.4 shows the dissemination progress of an insert notification when we insert noti-
fications every five rounds. We see that the RANDOM select items to send function clearly
performs worst. After 100 rounds, a notification has reached only slightly more than 50 replica
servers. The AGE and LINEAR functions perform better with 23 and 22 rounds respectively.
Though, AGE has some trouble reaching the last 2 percent of the replica servers. AGE2 out-
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Figure 4.3: Dissemination progress of an insert notification using various select to send functions
and an infinite cache size.

performs the other functions. We see that an insert notification only needs 7 gossip rounds in
order to reach all replica servers. This indicates AGE2 is the best candidate for selecting items
to send when we use caches with a finite cache size.

However, when we insert notifications every two rounds instead of every five rounds, the
dissemination progress of a notification changes dramatically as shown in figure 4.5. We see
that when we use AGE2, an insert notification still has not reached all replica servers after 100
gossip rounds. AGE needs 58 rounds to reach all replica servers. LINEAR performs best, as an
insert notification only needs 24 gossip rounds in order to reach all replica servers.

When comparing the different functions under both workloads, RANDOM obviously per-
forms worst. The two age functions tend to give newer insert notification a too high probability
of being selected for gossiping. This way, insert notifications have some trouble reaching all
replica servers when there is a high insert frequency of insert notifications. LINEAR, on the
other hand, does not always provide the best performance but is a safe option as its performance
is relatively predictable under various update scenarios. Therefore, we decide to use LINEAR

for our select items to send function.

4.2.3 Select items to keep

Previous experiments show that LINEAR is the most suitable function for selecting items to
send, so we use this function in the rest of our experiments. The next step is to determine the
best select items to keep function. Therefore, we run the previous experiments again, only the
select items to send function remains constant and we vary the select items to keep function.
We expect that the three functions that give newer notifications a higher probability to stay in
the cache after a gossip, perform better than the random function. Indeed, the random function
may remove a notification from a cache from a replica server before this server has been able
to select it for gossiping. Especially when this happens at an early stage of the dissemination
process of a notification, such a notification might replicate slower, or even not reach all replica
servers at all. As the other three functions give new notifications a low probability of being
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Figure 4.4: Dissemination progress of an insert notification using various select to send functions
and RANDOM as select items to keep function. Insert notification inserted every five rounds.
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Figure 4.5: Dissemination progress of an insert notification using various select to send functions
and RANDOM as select items to keep function. Insert notification inserted every two rounds.
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Figure 4.6: Dissemination progress of an insert notification inserted every five rounds using the
best select to send function and various select items to keep functions.

removed from a cache, it is less likely that such a situation occurs with these functions.
Figure 4.6 shows the dissemination progress of an insert notification inserted every five rounds

for the various select items to keep functions. We see that when we use RANDOM as select
items to keep function, an insert notification reaches all replica servers in 22 rounds. The three
other functions perform the same resulting in 19 rounds.

However, as shown in figure 4.7, when we insert an insert notification every two rounds,
AGE2 performs slightly better than AGE and LINEAR. Therefore, we decide to use AGE2 for
our select items to keep function.

4.2.4 Threshold

In this section we investigate whether using a threshold for the select items to keep function
improves the dissemination speed of the insert notifications. When we use a threshold of x
percent, this means we keep the freshest x percent of the insert notification in cache anyhow
when we apply the select items to keep function. So the select items to keep function works
only on the other insert notifications in cache. This way, we may protect the most recent insert
notifications until newer ones arrive, and increase the chance that we select them for sending
before we remove them from a cache.

We run our experiments using a threshold of 10, 20, 30 and 40 percent. Figure 4.8 shows
the dissemination speed of an insert notification inserted every five rounds using the various
thresholds and figure 4.9 shows the same for notifications inserted every two rounds. We can see
that the graphs are extremely similar. For all used thresholds, a notifications needs 20 rounds
in order to reach all replica servers. Therefore, it does not make sense to use such a threshold.
Apparently, the select items to keep function AGE2 gives the newest insert notifications such a
high probability of being kept in cache that a threshold has no effect on the dissemination speed
at all.
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Figure 4.7: Dissemination progress of an insert notification inserted every two rounds using the
best select to send function and various select items to keep functions.
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Figure 4.8: Dissemination progress of an insert notification inserted every five rounds using
various thresholds.
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Figure 4.9: Dissemination progress of an insert notification inserted every two rounds using
various thresholds.

4.2.5 Optimal cache size and gossip length

Finally, now that we have identified the best function for both selecting items to send and
selecting items to keep, we would like to determine whether the initial cache size and gossip
length are optimal or whether we can use a smaller value.

We run the same experiments as before, inserting 80 documents, one every two gossip rounds.
We start with determining the optimal cache size for the server identifiers. Figure 4.10 shows
the dissemination progress of an insert notification for server identifier cache sizes of 20, 10 and
5. We see that the cache size barely matters, and that the protocol is very robust to various
cache sizes. In the rest of the experiments we set the server identifier cache size to 10.

Next, we determine the optimal cache size for insert notifications. Figure 4.11 shows the
dissemination progress of an insert notification for notification cache sizes of 20, 10 and 5. We
see that when we use a cache size of 10, a notification only needs 11 rounds to reach all replica
servers, instead of 19 rounds. However, a cache size of 5 gives an even better result: a notification
reaches all replica servers within 6 rounds. Therefore, we set the notification cache size to 5.

Note that this result is counter-intuitive as we would expect a faster dissemination progress
of the notifications when we use a greater cache size. In a small cache, the probability of selecting
new items is higher. Therefore, new items are selected for gossiping at least once before newer
items arrive. This leads to a high dissemination speed of the notifications. However, a smaller
cache size bounds the insert rate of the notifications. We presume that when we (temporarily)
insert notifications at a higher rate, notifications will get removed from the cache before being
selected for gossiping, leading to a smaller dissemination speed.

Now, we can determine the optimal gossip length for the server identifiers. Figure 4.12 shows
the dissemination progress of an insert notification for server identifier gossip lengths 3, 2 and
1. We see that the results are the same for the three gossip lengths. This is due to the fact that
in these experiments, the set of nodes participating in the system does not change. When nodes
join and leave, a higher gossip length would be more appropriate. This is not the case in our
experiments. Therefore, we decide to use the minimum value and thus set the server identifier
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Figure 4.10: Dissemination progress of an insert notification for various server identifier cache
sizes.
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Figure 4.11: Dissemination progress of an insert notification for various insert notification cache
sizes.
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Figure 4.12: Dissemination progress of an insert notification for various server identifier gossip
lengths.

gossip length to 1.
The last step is to determine the optimal gossip length for the insert notifications. Figure

4.13 shows the dissemination progress of an insert notification for notification gossip lengths 2,
3, 4 and 5. When we use gossip length 5, we exchange all notifications within the cache. We see
that a gossip length of 2 (8 rounds) performs worse than the initial gossip length 3 (6 rounds).
Increasing the gossip length to 4 decreases the number of rounds to 5. However, when we use a
gossip length of 5, we obtain the same result as with gossip length 4. Therefore, we decide to
use the gossip length 4 for the insert notifications.

4.3 Conclusion

We have presented a decentralized full replication policy for Web documents. The main issue
of this policy is to make sure all replica servers have an up to date copy of all documents in
the system. To accomplish this, the policy needs to spread insert notifications across all replica
servers in an efficient and decentralized way. We structure the policy following epidemic protocols
as these protocols have the property of rapid and efficient dissemination of information.

We use CYCLON to keep the network connected and handle membership management, as it
creates communication graphs with a low clustering coefficient, which is good for the connectivity
of the overlay and decreases the probability of redundant message delivery. In addition, we add
to CYCLON the ability to spread insert notification, similar to the way Newscast spreads news.
According to our experiments, we can conclude that the best performing select to send function
is LINEAR, and the best select to keep function is AGE2.

Using this policy, we are able to spread insert notifications across 128 replica servers in about
5 rounds, using a cache size of 10 server identifiers and 5 insert notifications, and a gossip length
of 1 server identifier and 4 insert notifications.
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Figure 4.13: Dissemination progress of an insert notification for various insert notification gossip
lengths.
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Chapter 5

A Partial Replication Policy

In this chapter we present a decentralized replication policy for Web documents that allows
for controlled partial replication. With partial replication, the replicas of a Web document are
spread across k replica servers in a network with N nodes and 0 < k ≤ N .

A partial replication policy must address more issues than a full replication policy. First,
instead of spreading the replicas of a document to all replica servers in the system, a partial
replication policy has to make sure it places replicas at exactly k replica servers. To accomplish
this, we can add a counter to the insert notifications, which we decrease every time we create a
replica at a replica server. However, when we replicate insert notifications, we have to take care
of the counter, for example by splitting the counter between the sending and receiving server,
otherwise we may place too many replicas of a document.

Another issue is how we can keep the replicas of a document consistent in the presence of
document updates. We place replicas at random replica servers as discussed in Section 2.2,
therefore replicas of an updated document may be created at different replica servers than the
replicas of the previous version. We therefore have to take measures in order to inform such
replica servers that they need to drop the stale replica.

Locating replicas is also an important issue for a partial replication policy, because in the
case of partial replication, a client may request a document from a replica server that does not
have a local copy of the document. In that case, a replica server must be able to locate a replica
server that does have a local copy.

Finally, the replication policy must be able to deal with leaving and failing nodes, and
network failures.

We present two versions of the partial replication policy. The first one is based on the full
replication policy presented in the previous chapter. The second one is based on the structured
peer-to-peer system Chord. The advantage of the former is that maintenance costs for the
overlay network are low. However, locating replicas may be difficult as there is no correlation
between replica servers and the content. As our experiments will show, this policy does not
perform well enough in locating replicas. Therefore, we also present an improved version of the
unstructured policy that uses a two-layered approach in order to improve locating replicas. With
the structured version, locating replicas is easy because it creates a structured overlay network
and places documents at specific replica servers. However, maintenance of the overlay network
may become costly.

The main goal of this chapter is to optimize both partial replication policy versions and
determine how they differ in performance and costs.

Section 5.1 presents the unstructured version of the partial replication policy based on the
full replication policy discussed in the previous chapter. We evaluate this policy in Section 5.2.
Section 5.3 describes the improved unstructured replication policy that is based on a two-layered
approach. Section 5.4 evaluates this improved version. In Section 5.5, we present the structured
version of the replication policy that is based on Chord. We evaluate the structured version in
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Section 5.6. Finally, section 5.7 compares the two versions in both performance and maintenance
costs.

5.1 Unstructured version

The unstructured version of the partial replication policy is based on the full replication policy
that is structured following epidemic protocols as we described in the previous chapter. In this
section we discuss the issues that arise when we use the full replication policy in order to achieve
partial replication.

5.1.1 Replica placement

We need to place replicas of a document at exactly k replica servers, instead of placing a
copy of a document at all replica servers. Therefore, we add a replication counter to the insert
notifications. We decrement this counter every time we create a new replica of the corresponding
document on a replica server. In the full replication policy, we replicate the insert notifications
across all replica servers.

However, when we replicate the insert notifications with replication counter across the replica
servers, we have to take care of adjusting the replication counter. If we simply copy the counter
when we replicate an insert notification, we will create too many replicas. An option is to split
the counter equally between the sending replica server and the server that receives the insert
notification. However, a potential problem is that this solution increases the number of insert
notifications in the system every gossip round. Furthermore, at the end of a gossip we can only
remove insert notifications with a counter equal to zero from the cache. If we remove an insert
notification with a counter greater than zero, this results in placing less than k replicas in the
system.

Another solution is to migrate the insert notifications across the replica servers. The ad-
vantage is that per document version the system contains maximum one insert notification and
thus one replication counter. This way, we can easily adjust the replication counter without an
increase of insert notifications. A disadvantage of this solution is that migrating insert notifi-
cations generally takes more gossip rounds than replicating them. Fortunately, often we do not
have to place replicas at all replica servers in the system. Therefore, we use migration in our
experiments to spread the insert notifications.

5.1.2 Consistency enforcement

Another issue is keeping the replicas of a document consistent in the presence of document
updates. As we place replicas at randomly selected replica servers, we may place replicas of
an updated document at other replica servers than the replicas of the previous version. The
replication policy has to inform those replica servers that they have to drop the stale document
versions. However, because of the random placement, we do not know which replica servers
possess a stale replica. Therefore, we have to inform all replica servers in the system that they
have to drop the stale document version if present. For this, we can use the full replication
policy in order to spread these remove notifications across all replica servers in the system.

5.1.3 Replica location

When a client requests a document from a replica server that does not have a replica stored
locally, the replica server has to locate it. This is not an easy task as replicas are placed randomly
in the system. A simple solution is for the requested replica server to initiate a recursive search
through the server network, similarly to the Gnutella protocol. In such a case, we have to
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determine how many hops it takes on average to find a replica that is not stored locally. Section
5.3 will investigate a possible improvement to this very simple policy.

5.1.4 Availability

Finally, servers may leave or fail, and parts of the network can be overloaded. In addition, new
servers may join the system and failing servers may recover.

When a replica server wants to join the system it has to perform the CYCLON join operation
(Section 3.2) in order to become part of the overlay network. In addition it could take over
replicas from other, possibly heavily loaded, replica servers.

To leave the network a replica server can just stop gossiping. This way it will be forgotten in
a limited amount of time. In addition it could send its replica list to a server from its cache and
make that server responsible for creating these replicas on other replica servers in the system.

In case a replica server fails it will be forgotten in a limited amount of time just like with
a leaving server. It is not possible to determine which replica it hosted. During the time it is
unavailable its replicas are just not accessible.

When a replica server recovers there are two possible situations. One, the server has no state
and should just act as a joining server. Two, it has does have a state and should ask one or
more other replica servers for missed updates.

5.1.5 Maintenance

In order to keep the network connected the servers in the network have to exchange server
identifiers from their caches. In the previous chapter we determined that exchanging one server
identifier per gossip round is enough to keep a network of 128 nodes connected.

We need to spread remove notifications in order to remove stale replicas. As we place
the replicas at random replica servers we need to disseminate the remove notifications to all
replica servers to make sure all replica servers with a stale version are reached. We use the
full replication policy for this purpose. So, every gossip round a replica server exchanges four
remove notifications.

Finally, we disseminate insert notifications to spread the announce of new documents and
updates. We use the same gossip length as for the remove notifications.

5.2 Performance evaluation unstructured version

We ran our experiments on a simulator implementing the unstructured partial replication pol-
icy. It simulates 128 replica servers and an origin server. We use the same cache sizes and
gossip lengths as determined in the previous chapter. We use the same values for the remove
notifications as for the insert notifications. Before we insert any documents into the system,
the simulator runs the same warm-up phase as the full replication policy (Section 4.2), in order
to create a connected overlay network. Next, we insert some warm-up documents and updated
versions, in order to fill up the remove notifications part of the caches. The insert notifications
part of the caches will be almost empty when we start our experiments as we remove an insert
notification from a cache when its replication counter hits zero.

We insert a document into the system by adding a corresponding insert notification to the
cache of the origin server. When the document is an update, we also add a remove notification
to the cache in order to remove stale documents from the system. A replica server that receives
an insert notification, fetches the corresponding document from the sender of the notification
when it does not have it yet, and decrements the counter of the notification.

For our experiments we use a trace file of all document accesses and updates from the VU
Web server. The trace runs from November 13th to November 20th 2005. We filtered out all
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Table 5.1: Trace results.

nr replicas 4 8

nr requests 1,270,183 1,270,183
nr retrieves 454,806 708,892
% retrieves 36 56
nr misses 815,377 561,291
% misses 64 44
nr stale 3,209 4,910

requests for documents that are requested less than 50 times. We did this as replication makes
sense only for relatively popular documents and in order to keep the simulator manageable.
The filtered trace file consists of 3,937 documents, 1,270,183 requests and 4,815 updates. The
number of updates is excluding the initial creations of the documents.

We use the trace file as follows. We execute two runs. The first run consists of analyzing the
trace file and spreading the replicas of the documents with a last modification date smaller than
the start time of the second run. We set the start time of the second run to the request date
of the first request. In the second run we issue the requests and insert the remaining replicas.
During each gossip round we first insert all replicas of documents of which the last modification
date falls within the current round. Next, we issue the requests with a request date that fall
within the current gossip round. At the end of a gossip round each server initiates a gossip. We
set the gossip round to 10 seconds.

5.2.1 Requests

We first want to determine how many hops it takes to serve a client request for a document.
We run experiments where we place 4 and 8 replicas of each document in the system. When
a server reveives a client request it first searches in its local documents. In case it does not
have the requested document locally, the server asks the servers in its cache one by one without
recursing the search further.

Table 5.1 gives an overview of the results. We see that when we place 4 replicas only 36
percent of the request can be served. When we place 8 replicas the number of successfull requests
increases to almost 56 percent. However, these results are still far from ideal.

A possible solution is to increase the cache size, or extend the search algorithm by letting
the servers in the cache of the requested replica server forward the request to the servers in
their caches. However, this may lead to flooding the network with search messages. Therefore,
we propose a different solution. We create a second layer on top of the CYCLON layer that
facilitates searching. We discuss this solution in the next section.

5.3 Improved unstructured version

As we have shown in the previous section, the unstructured partial replication policy does not
perform well enough. It takes way too many hops for a replica server to locate a replica that is
not stored locally. Therefore, we propose a two-layered approach.

The bottom layer runs the full replication algorithm. It is responsible for membership man-
agement and keeping the network connected. In addition, it spreads remove notifications to
all replica servers to remove stale documents. On top of this layer we create a second layer
that facilitates searching for replicas in the network. We use T-Man to construct the overlay
network into a torus (as discussed in Section 3.2), which is a suitable topology for searching
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purposes. In our experiments, we assign all servers and documents a random 2-dimensional
identifier consisting of two 31-bit attributes. Another way to obtain such an identifier is hashing
a server’s address and a document’s URL. The distance function is defined as the sum of the
distances in both directions with applying the periodic boundary condition. So, the distance in
one dimension is defined by d(a, b) = min(N − |a − b|, |a − b|), where a and b are two points
from an interval [0, N ]. Ranking is defined through this distance function. Each node can order
the server identifiers in its cache according to increasing distance from its own identifier.

Inserting replicas of a document requires routing an insert notification to a node with an
identifier close to the identifier of the document. We achieve this by forwarding the notification
to the server in the current cache (from both layers) with an identifier closest to the identifier of
the document, as long as the current cache contains a server identifier closer than the identifier
of the owner of the cache. When the notification has reached the closest server, this server
fetches the corresponding document from the origin server decrements the notification counter,
and adds the notification to its top layer cache.

During a gossip round of the top-layer, server identifiers are exchanged in order to maintain
the overlay topology. We apply the ranking function on all server identifiers from both layers
and randomly select gossip length server identifiers from the first top-layer cache size items. We
select a gossip partner in the same way as T-Man: applying the ranking function on the server
identifiers from the top layer and selecting a random server from the first half. In addition, the
servers exchange insert notifications. This way we spread the insert notifications across replica
servers with an identifier close the identifier of the server that initially received the notification,
and thus close to identifier of the document. We use LINEAR to select the insert notifications.
Selected insert notifications are removed from the cache, in order to migrate them just like with
the previous version. At the end of a top-layer gossip, a server applies the ranking function on
the server identifiers from both layers and keeps the top-layer cache size first items in its top-
layer cache. Furthermore, it keeps the received insert notifications and removes all notifications
with a counter equal to zero.

When a client requests a document from a replica server that does not host the requested
document, the server needs to locate it. It can find the document by forwarding the request
to the server in its cache (from both layers) with an identifier closest to the identifier of the
document until it reaches a server that has a local copy.

5.4 Performance evaluation improved unstructured version

We ran our experiments on a simulator implementing the two-layered unstructured partial repli-
cation policy. It simulates 128 replica servers and an origin server. Each experiment starts with
a warm-up phase. In this warm-up phase, the bottom layer creates a connected overlay and
fills up the remove notifications part of the cache in the same way as the previous version of
the unstructured partial replication policy. A gossip round starts with each server initiating
a bottom-layer gossip. After that, each server initiates a top-layer gossip for constructing the
torus topology.

The cache of the top-layer consists of 20 server identifiers and 10 insert notifications. The
gossip length is 3 for the server identifiers and 4 for the insert notifications. We use the same
trace file as we used for the previous unstructured version.

5.4.1 Inserts

We first want to determine how many hops it takes to insert the replicas of a document into
the system. Figure 5.1 gives an overview of the number of hops it takes to insert a replica. We
see that the median number of hops is 3. This is due to the fact that it takes about 3 hops in
order to find the node with an identifier closest to the identifier of the document. Note this is
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Figure 5.1: Number of hops per insert.

Table 5.2: Results of all requests.

Nr replicas Average nr hops Median nr hops

4 2.72 3
8 2.60 3

16 2.44 2

the number of hops it takes to insert one replica. Inserting k replicas of a document requires an
additional k−1 hops. Furthermore, that takes at least k−1 gossip rounds because we insert the
additional replicas by migrating the insert notification using gossiping to the remaining replica
servers.

5.4.2 Requests

We also want to determine how many hops it takes to serve a client request for a document. We
run experiments where we place 4, 8 and 16 replicas.

Figure 5.2 shows the distribution of the number of hops it takes to serve a client request for
a document. Table 5.2 gives an overview of the average and median number of hops. We see
that it takes about three hops to serve a client’s request when we place 4 or 8 replicas. Placing
16 replicas results in a median hop count of two.

Figure 5.3 gives an overview of the number of hops it takes to serve a client request in
percentage of requests that cannot be served locally. Table 5.3 shows the average and median
number of hops. We see that requests for documents that are not stored on the requested replica
server take about three hops. These results are considerably better than those obtained with
the first unstructured partial replication design.

We note that searching for a partially replicated document is slightly faster than inserting it.
When we place 16 replicas about 50 percent of the requests are served in less than three hops,
whereas inserting a replica requires only less than three hops in about 25 percent of the inserts.
So placing replicas does not only improve availability, which is our main reason for replication,
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Figure 5.2: Distribution of the number of hops per request.

Table 5.3: Results of requests not served locally.

Nr replicas Average nr hops Median nr hops

4 2.78 3
8 2.71 3

16 2.65 3

but also performance, which is a nice side-effect.

5.4.3 Costs

During each gossip round, the replica servers need to exchange data in order to keep the network
connected (bottom-layer) and maintain the torus topology (top layer). In a gossip round, each
replica server initiates two gossips, one for each layer. A server exchanges one server identifiers
in a bottom-layer gossip and. three in a top-layer gossip.

Maintenance of the overlay network thus requires sending 4 ∗ N messages containing four
server identifiers per gossip round for a network of size N. A server identifier consists of a server
address and a timestamp. In addition, to this messages we can add notifications in order to
spread information about new documents and updates.

5.5 Structured version

The structured version of the partial replication policy is based on Chord [23]. In this section
we discuss the issues that arise when we structure our partial replication policy following Chord.

5.5.1 Replica placement

We need to place replicas of a document at exactly k replica servers. We use Chord to determine
the successor node (node whose identifier is equal to or follows the identifier of the document in
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Figure 5.3: Distribution of the number of hops per request not served locally.

the identifier space) of the document. Subsequently, we place replicas at the successor and the
k − 1 nodes that logically follow the successor node on the Chord identifier ring. To accomplish
this, the origin server can send the successor node an insert notification that contains the name
of the document, its last modification date, and a replication counter with value k.

We can spread the insert notification to the next k − 1 nodes in two different ways. First,
when a replica server receives an insert notification, it can fetch the corresponding document
from the server that sent the notification, decrease the counter and forward the notification to
its successor node. When the counter hits zero, a server can drop the insert notification.

Another option is to use a node’s successor list in order to forward the insert notification.
This way, the successor node can inform the servers in its successor list about the notification.
When we make sure the successor list is greater than or equal to the number of replicas we
need to place, it can inform all replica servers that need to place a replica of the document. An
advantage of this approach is that we can make the successor node responsible for making sure
its k− 1 successor nodes have an up to date version of the document. Furthermore, whenever it
notices a replica server in its successor list has failed, it can remove this server from the list, add
a new successor node and send a notification to this node. However, when the number of replicas
is large compared to the number of nodes in the network, the successor list becomes large and
its maintenance cost may increase. Note that this option imposes a system-wide higher bound
on the document’s replication degree. In the first option, each document could potentially be
given an arbitrary replication degree with no restriction.

In our experiments, we use the first option as we do not run experiments with failing servers
and do not want to restrict the replication degree.

5.5.2 Consistency enforcement

Another issue we need to take care of is keeping the replicas of a document consistent in the
presence of updates. We place a document on its successor node and the k−1 logically following
nodes. An update of a document gets the same identifier as the previous version. Therefore,
they have the same successor node. So, in case of an update the successor node can simply
drop the old version and replace it by the new one. We discuss maintaining consistency in the
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presence of joining and leaving servers in Section 5.5.4.

5.5.3 Replica location

When a client requests a document from a replica server that does not have a replica stored
locally, the replica server has to locate a replica. The replica server can find the successor node
of the document using Chord.

However, Chord always finds the first successor of the document and thus we always issue
the same replica server for a given document. While this is correct with respect to replication
for fault tolerance, it will usually lead to an unbalanced load. Another option is to first find
the predecessor node (first node that precedes the successor node in the identifier space) of the
document, and ask this node for a random successor node from its successor list. However, this
must be a node that has the requested replica stored locally. This means, the predecessor node
has to know how many replicas the requested document has, or may have to contact multiple
nodes from its successor list, until it has found one with the requested document.

In our experiments, we issue the request to the first successor of the document as we are not
interested in load balancing yet. We first want to determine how many hops it takes to serve a
client request.

5.5.4 Availability

Finally, servers may leave or fail, and parts of the network can be overloaded. In addition, new
servers may join the system and failing servers may recover.

When a server n joins the system it has to find a server m that is already part of the network.
It can for example ask a well known bootstrap server for such a server. Next, n should ask m to
find its successor node and store it in its routing table. Furthermore, server n becomes the new
successor for some of the documents of its successor node and should fetch these. In addition,
a server that hosts the kth replica of such a document should drop it. We can handle this by
storing a counter with each replica stating how many replicas there are left among the next
successor nodes. Thus, the first replica stores a counter value of k and the counter of the last
replica is equal to zero.

When a server leaves the system, it can inform its successor about this. In addition it can
inform its successor about its new predecessor node. The successor node becomes responsible
for the replicas of the leaving server. If the successor already hosts a replica of the leaving server
this information should be forwarded to the successor’s successor until a server is found that
does not have the replica yet. That server should now also host a copy.

When a node detects the failure of a node n it can inform the successor node of n. The replica
list of the failing node can be reconstructed by examining the replica list of its predecessor node.
The failing server hosted a copy of all documents in this list with a counter value greater than
zero.

A server that recovers from a failure can act as a joining server.

5.5.5 Maintenance

The structured overlay requires maintenance as servers may join and leave the system. The
maintenance protocol consists of four steps. In the first step, a server checks if there is a newly
joined server that is its successor node instead of the server that is currently stored as successor
in the routing table.

The second step consists of initializing and checking the finger table. During a maintenance
round a server initializes or checks one of its finger table entries by looking up the entry’s
successor node. The third step is checking whether the predecessor has failed.
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Table 5.4: Results of all requests.

Nr replicas Average nr hops Median nr hops

4 4.21 4
8 4.07 4

16 3.75 4
32 3.30 4
64 2.42 2

128 1 1

Finally, a server maintains its successor list. It copies the successor list of its successor node,
removes the last entry, and prepends the successor node to it.

5.6 Performance evaluation structured version

We ran our experiments on a simulator implementing the structured partial replication policy
based on Chord. It simulates 128 replica servers and an origin server. We assign all servers
a random 63-bit identifier from the identifier space. (This is long enough for our experiments.
Should we use more nodes and/or documents, a 128-bit identifier could be more appropriate.)
We start all experiments with a warm-up phase in order to create a connected overlay. In this
warm-up phase, the servers join one by one. The join operation of node N consists of asking a
bootstrap server for a random server P that is already part of the network. In addition, node
N requests node P to find the successor node of N , and stores this in its routing table. During
this warm-up phase, the nodes periodically run a maintenance protocol in order to complete the
routing tables. We discuss this maintenance protocol in Section 5.5.5.

We use the same trace file as we used for the unstructured version (Section 5.2). We assign
all documents that are requested also a random 63-bit identifier.

5.6.1 Requests

We first want to determine how many hops it takes to serve a client request for a document. We
run experiments where we place 4, 8, 16, 32, 64 and 128 replicas of all documents.

In these experiments the successor list contains only the first successor of a node. When a
successor node receives a notification, it fetches the corresponding document from the server that
sent the notification, it decrements the counter, and it forwards the notification to its successor
node in case the counter is greater than zero.

Figure 5.4 shows the distribution of the number of hops it takes to serve a client request for
a document. Table 5.4 gives an overview of the average and median number of hops. We see
that when we place up to 32 replicas it takes about four hops to serve a client’s request. When
half of the replica servers have a replica of the documents it takes only two rounds. Obviously,
when the documents are fully replicated all documents can be found locally resulting in a hop
count of one. We see that the number of hops it takes to retrieve a document remains constant
until we place more than 32 replicas.

Figure 5.5 gives an overview of the number of hops it takes to serve a client request in
percentage of requests that cannot be served locally. Table 5.5 shows the average and median
number of hops. We see that requests for documents that are not stored on the requested replica
server take about four hops when we do not apply full replication. We conclude that in a network
of 128 replica servers placing more than four replicas does not improve the number of hops it
takes to serve a client request.
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Figure 5.4: Distribution of the number of hops per request.

Figure 5.5: Distribution of the number of hops per request not served locally.

Table 5.5: Results of requests not served locally.

Nr replicas Average nr hops Median nr hops

4 4.31 4
8 4.27 4

16 4.14 4
32 4.06 4
64 3.82 4

128 - -

46



Figure 5.6: Distribution of the number of hops per request using references.

Table 5.6: Results of all requests using references.

Nr replicas Average nr hops Median nr hops

4 2.49 2
8 2.43 2

16 2.32 2
32 2.11 2
64 1.71 2

128 1 1

5.6.2 References

Now that we have determined how many hops it takes to serve a client’s request, we would like
to see how the use of references can improve this number of hops. Every time a replica server
has to search for a document, it stores a reference to the server where it found the replica. A
replica server examines its references first before using the search method. We do not set an
upper bound on the number of references. A replica server can just store one reference per
document. There are niftier caching methods available but these are out of the scope of this
thesis and can be used in future research.

Figure 5.6 shows the number of hops it takes to serve a client request for a document in
percentage of the total requests. Table 5.6 gives an overview of the average and median number
of hops. We see that it takes about two hops to serve a client request.

Figure 5.7 gives an overview of the number of hops it takes to serve a client request in
percentage of requests that cannot be served locally. Table 5.7 shows the average and median
number of hops. We see that request for documents that are not stored on the requested replica
server take about two rounds when we do not apply full replication. We conclude that using
references can decrease the required number of hops to serve a request by two.
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Figure 5.7: Distribution of the number of hops per request not served locally using references.

Table 5.7: Results of requests not served locally using references.

Nr replicas Average nr hops Median nr hops

4 2.54 2
8 2.53 2

16 2.51 2
32 2.47 2
64 2.42 2

128 - -
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Figure 5.8: Distribution of the number of hops per insert.

5.6.3 Inserts

Another interesting issue is how many hops it takes to insert the replicas of a document into
the system. Figure 5.8 gives an overview of the number of hops it takes to insert a replica. We
see that the median number of hops is 4. This is the same as the number of hops it takes to
locate a document. So, we can conclude that it takes 4 hops in order to find the successor of a
document. Note this is the number of hops it takes to insert one replica. Inserting k replicas of
a document takes an additional k-1 hops.

5.6.4 Costs

During each maintenance round each server n has to check if a new server has joined that is its
new successor, by asking its successor node m about the predecessor node of m. This requires
sending two messages. If node n does have a new successor node, n should inform its new
successor node that it is its new predecessor. This requires an additional message.

Furthermore, a server needs to fetch the successor list of its successor to update its own
successor list. This leads to two additional messages.

Next, it should look up the successor node of one of its finger table entries. We determined
that looking up a successor node takes about four hops and thus five messages.

Finally, a server needs to check if its predecessor node is still available. This requires two
additional messages.

5.7 Comparison

Now we have evaluated the performance and costs of both the improved unstructured and the
structured version of the partial replication policy, we compare the results in this section.
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The improved unstructured version requires about three hops in order to insert the first
replica, whereas the structured version takes about four hops. The structured version inserts
the remaining k − 1 replicas by forwarding the insert notification from successor to successor,
leading to an additional k − 1 hops. The unstructured version on the other hand, spreads the
notification to the remaining k − 1 replica servers during top layer gossiping. It may take some
additional gossip rounds before all remaining replica servers are reached but it does not take
extra messages.

Retrieving a document requires about three hops for the unstructured version, which is the
same as for inserting. Although, searching for a document is slightly faster when we place
16 replicas. The structured version needs four hops, which is also the same as for inserting.
However, if we cache document searches using references, documents can be found in only two
hops.

It is hard to compare the maintenance costs of both versions. The unstructured policy has
a clear maintenance protocol. Every gossip round, all replica server exchange data in order
to maintain the network structure. Furthermore, the replica servers also exchange information
about new documents, updates and stale versions at the same time. Thus, the number of
messages exchanged per gossip round is stable, despite the rate in which servers join and leave the
overlay network. Although, the presence of high churn may demand for more server identifiers
to be exchanged per gossip round in order to adapt to these changes more quickly. But sending
for example 10 instead of 5 server identifiers is not a big burden and at least the number of
messages remain constant. The advantage of such a constant protocol is that we know the costs
in advance and are able to prepare for that.

The maintenance protocol of the structured version is not that constant. First of all, in the
structured version replica servers need to check their successor node, as invalid successor node
references may lead to unsuccessfull searches. Furthermore, servers need to check their finger
table entries, as invalid entries in this table may lead to slower searches. These checks require
searches for successor nodes, are not constant and depend on the rate at which servers join and
leave the system. Finally, it is not obvious how often servers need to do these checks. The
maintenance round of the structured version does not necessarily have to be the same as that
of the unstructured version.

So, performance results are almost equal and maintenance cost are difficult to compare.
However, the main conclusion is that we created an unstructured partial replication policy that
performs almost identical to a structured one. Furthermore, the unstructured version has the
ability to quickly spread information to (a subset of) all servers in the network, and has constant
maintenance costs. This are things the structured version lacks and makes the unstructured
version an interesting alternative.
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Chapter 6

Conclusion

The goal of this thesis was to design a decentralized replication policy for Web documents that
assumes the origin server to be unavailable most of the time and only needs the origin server’s
presence to inform the replica servers about a new or updated document.

To accomplish this, we organized the replica servers in a decentralized fashion such that at
least one of them has a copy of each document. In such a system, we must make sure replica
servers know where they can find documents that they do not have stored locally. In order
to support up to n − 1 unavailable replica servers we made the replication policy tunable such
that copies are available at n different replica servers. Finally, to implement best-effort weak
consistency we ensured that updates are spread in a reasonable limited time interval after an
update takes place at the original document.

These properties come close to those offered by peer-to-peer overlays: sharing computer
resources, decentralization, self-organization, resilience to network and server failures. Therefore,
we decided to structure the replication policy along a peer-to-peer architecture.

We first introduced a replication policy that achieves full replication, which means that
every replica server hosts a copy of all documents of the origin server. This simple version of
a replication policy forms the base of a replication policy that achieves a more general form
of replication, namely partial replication. The main challenge of the full replication policy
is to spread notifications from the origin server about new or updated documents across all
replica servers in an efficient and decentralized way. As these requirements are very similar to
the properties of epidemic protocols, we structured the full replication policy following these
protocols.

The full replication policy uses CYCLON to keep the network connected and handle mem-
bership management. We added the ability to spread notifications, similar to the way Newscast
spreads news. Our experiments showed that LINEAR is the best performing select items to
send function, and AGE2 the best performing select items to keep function. LINEAR gives
notifications a probability of being selected that decreases linearly with its age. AGE2 gives
newer notifications a significantly higher probabiliy of being selected than older ones.

With this policy we are able to spread notifications across 128 replica servers in about 5
gossip rounds, using a cache size of 10 server identifiers and 5 insert notifications, and a gossip
length of 1 server identifier and 4 insert notifications.

Next, we presented a decentralized replication policy that allows for controlled partial repli-
cation. With controlled partial replication documents are replicated to exactly k replica servers
in a network with N nodes and 0 < k ≤ N .

A partial replication policy must address more issues than a full replication policy. First,
instead of spreading the replicas of a document to all replica servers in the system, a partial
replication policy has to make sure it places replicas at exactly k replica servers. Furthermore,
it needs to keep the replicas of a document consistent in the presence of updates, as we may
place replicas of an updated document at other replica servers than the replicas of the previous
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document version. Finally, the policy must be able to locate replicas, as clients may request
documents from replica servers that do not have a local copy of the requested document.

We created two versions of the partial replication policy. The first one is based on epidemic
protocols and is an extended version of the full replication policy. We added a replication counter
to the insert notifications to make sure we place replicas at exactly k replica servers. We also
introduced remove notifications that we spread to all replica servers using the full replication
policy in order to remove stale documents. This was necessary, as an updated document may be
placed at a different replica server than the previous version, and we need to inform all replica
servers that host a stale copy that they need to drop them.

However, in this policy locating replicas becomes a problem. Initiating a recursive search
through the server network, similarly to the Gnutella protocol, would require traversing many
hops and may lead to flooding the server network with search messages. Therefore, we presented
an improved version of the unstructured replication policy.

The improved version uses a two-layered approach. The bottom layer runs the full replication
algorithm. It is responsible for membership management, keeping the network together and
spreading remove notifications. The top layer uses T-Man to construct the overlay network into
a torus such that it is suitable for searching purposes. In addition it spreads insert notifications
to servers that are close with respect to their 2-dimensional identifier. With this policy, we were
able to insert and retrieve documents while traversing only three server hops. These results are
considerably better than those obtained with the first unstructured partial replication design.
The maintenance protocol of the unstructured version has constant costs. During each gossip
round a constant number of messages is exchanged between the replica servers. Furthermore,
the replica servers also exchange information about new documents, updates and stale versions
at the same time. The advantage of such a constant protocol is that we know the costs in
advance and are able to prepare for that.

The second version of the partial replication policy is based on the structured peer-to-peer
system Chord. It places replicas of a document on its first k successor nodes. We determined
that finding a document’s successor node takes traversing about four hops. Therefore, inserting
and retrieving documents required also about four hops. Although caching document searches
using references can decrease the required number of hops to find a document by two hops. The
costs of the maintenance protocol of the structured policy are not constant but depend on the
rate at which servers join and leave the system.

The main conclusion of this thesis is that we were able to create an unstructured partial
replication policy that performs almost identical to a structured one. We showed that an un-
structured replication policy is not only good in terms of quickly spreading information, but
can also be used for locating data. As the unstructured version has features that the struc-
tured one lacks, namely the ability to spread information quickly to (a subset of) all servers in
the network, and constant maintenance costs, it is a very interesting alternative. This partial
replication policy may be interesting for Globule, which currently does not have a decentralized
replication policy.
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