Dynamically Selecting Optimal Distribution Strategies for Web
Documents

Guillaume Pierre, Maarten van Steen, Andrew S. Tanenbaum
Vrije Universiteit Amsterdam
Department of Mathematics and Computer Science
{gpierre,steen,ast} Qcs.vu.nl

Abstract

To improve the scalability of the Web it is common practice to apply caching and
replication techniques. Numerous strategies for placing and maintaining multiple copies
of Web documents at several sites have been proposed. These approaches essentially apply
a global strategy by which a single family of protocols is used to choose replication sites
and keep copies mutually consistent. We propose a more flexible approach by allowing
each distributed document to have its own associated strategy. We propose a method
for assigning an optimal strategy to each document separately and prove that it gener-
ates a family of optimal results. Using trace-based simulations, we show that optimal
assignments clearly outperform any global strategy. We have designed an architecture
for supporting documents that can dynamically select their optimal strategy, and eval-
uate its feasibility using a prototype implementation running in an emulated Internet
environment.

Keywords: Web replication and caching, adaptive replication, Web documents, wide-area
distributed systems.

1 Introduction

Web users often experience slow document transfers caused by poorly performing servers and
overloaded parts of the network. These scalability problems are commonly tackled through
caching and replication by which multiple copies of a document are distributed across servers
in the network [24]. A user’s request for a document is then directed to a nearby copy, thus
reducing access times, average server loads, and overall network traffic.

There are several ways in which copies of a document can be distributed. In general, a
distinction is made between caching and replication. With caching, whenever a user requests
a document for the first time, the client process or local server handling the request will fetch
a copy from the document’s server. Before passing it to the user, the document is stored
locally in a cache. Whenever that document is requested again, it can simply be fetched from
the cache. In principle, there is no need to contact the document’s server again; the request
can be entirely handled locally. In the case of replication, a document’s server proactively
places copies of the document at various servers in the network, anticipating that enough
clients will make use of those copies that warrant their replication. Apart from this difference
in the creation time of copies, we consider caching and replication to be fundamentally the
same mechanism.

Although caching and replication can significantly alleviate scalability problems, having
multiple copies of a document also introduces a consistency problem. Whenever a document
is updated it is necessary to ensure that all copies are brought up-to-date as well; otherwise
clients may access stale data. Unfortunately, maintaining strong consistency, that is, keeping
all copies of a document identical, is often costly. For example, in the case of a cache, it may
be necessary to first contact the document’s server to see if the cached copy is still valid. Con-
tacting the server introduces global communication that may negate the performance initially
gained by caching. In the case of replication, strong consistency may require that updates
are immediately propagated to all copies, even if there are currently no clients requesting the
document. In that case, update propagation wastes network bandwidth.

A solution to this problem is to weaken the consistency for carefully selected documents.
For example, many Web caches follow a policy in which a cached document is always returned
to the requesting user without checking for consistency with the document’s server. To avoid
having cached documents becoming too old to be useful, each one has an associated expiration
time beyond which it is purged from the cache. This caching policy is derived from the Alex
file system [7] and is followed in the widely-used Squid caches [8].

Weak consistency is not universally applicable. In fact, in most cases, users simply want to
have an up-to-date copy of a document returned when requested and protocols implementing
weak consistency generally fail to meet this requirement. Unfortunately, since there are several
evaluation metrics involved, it is not clear what the best solution for maintaining strong
consistency is. We argue that there is no single best solution and that for each document it
should be decided separately what the best strategy is to distribute its copies and to keep
them consistent. Moreover, servers must be prepared to dynamically adapt a strategy for a
document, for example, because its usage and update pattern have changed.

We have conducted a series of trace-driven simulation experiments that substantiate these
claims. In this paper, we first propose a method for associating a replication policy to each
document, and prove that it generates a family of optimal assignments. We then show that
the resulting assignments perform significantly better than assignments where every docu-
ment uses the same replication strategy. Finally, we propose an architecture for supporting
replicated Web documents that can dynamically analyze their recent access pattern and select
the policy which suits them best.

Preliminary results have been reported in [28]. However, it presented only empirical results
based on a single trace file, which confirmed our intuition that differentiating replication
strategies provides better performance than one-size-fits-all assignments. The contributions
made in the present paper are threefold: (i) we provide a mathematical proof of optimality
of our assignment method; (ii) simulations are based on two different trace files, and (iii)
we also now present results on the dynamic adaptation of replication policies. None of these
contributions have been reported in [28].

The paper is organized as follows. In Section 2 we present tradeoffs that need to be made
when implementing replication strategies, and discuss related work on selecting a replication
policy. We proceed with describing how we evaluate strategies in Section 3, and describe the
results of our simulations in Section 4. In Section 5 we propose and evaluate an architecture
for supporting our approach to distributed Web documents. We conclude in Section 6.

Y —» Document-initiated replication

Permanent
replicas

Document-initiated
replicas

---» Client-initiated replication

|
I
1

Figure 1: Conceptual layering of document hosts.

2 Related Work

There are many ways in which copies of a Web document can be distributed across multiple
servers. One has to decide how many copies are needed, where and when to create them, and
how to keep them consistent. We define a replication policy as an algorithm that makes these
decisions.

We briefly describe commonly used placement protocols (which decide on where and when
to create copies) and consistency protocols (which decide on how to keep the copies consistent).
We then discuss the existing results on selecting an appropriate replication policy.

2.1 Placement Protocols

A placement protocol is used to determine when and where a copy of a document is to be
placed or removed. Placement can be initiated either by servers or clients, as shown in
Figure 1. We distinguish three different layers of hosts that can hold a copy of a document.

The core layer consists of servers that host permanent replicas of a document. In many
cases, each Web document is hosted by only a single primary server. Clusters of Web servers |1,
12] and servers that mirror entire Web sites are examples of multiple permanent replicas.

The middle layer consists of servers for hosting document-initiated replicas. These replicas
are normally created by one of the permanent replicas, but possibly also by one of the other
document-initiated replicas. In the context of the Internet, document-initiated replicas appear
in Content Delivery Networks (CDNs), such as RaDaR [32] and Akamai [20]. In these systermns,
content is transferred to servers in the proximity of requesting clients. How the transfer is
initiated is part of the consistency protocol as we describe below.

The outer layer consists of servers for hosting client-initiated replicas, also known as cache
servers. Creating a cached version of a document is entirely a local decision that is, in
principle, taken independently from the replication strategy of the document. However, the
decision to cache may be subject to many constraints. For example, a client may decide to
cache only those documents that it expects will not change soon. Also, it may have limited
disk space available for caching. Web proxy caches form a typical example of client-initiated
replicas in the Internet.

2.2 Consistency Protocols

A consistency protocol implements a specific consistency model. There are various tradeoffs
to be made when implementing such models, and the most efficient implementation is often

Table 1: Various tradeoffs for implementing consistency protocols.

Parameter Values Meaning
Change - notification Describes how changes between replicas are distributed: is only a
distribution - full state notification (or invalidation) sent telling that an update is needed, is the
- state differences full state sent, or only differences, or is the operation sent that is to be
- operation carried out to update the receiver’s state?
Replica - immediate Describes how quickly a replica reacts when it notices it is no longer
responsiveness - lazy (e.g., consistent with the other replicas. A passive replica will do nothing.
periodic)
- passive
Replica reaction - pull Describes what a (non passive) replica does when it notices it is
- push inconsistent with other replicas. It either sends or requests updates.
Write set - single This parameter gives the number of writers that may simultaneously
- multiple access the document.
Coherence - permanent only Describes who implements the consistency model: permanent and/or
group - permanent and document-initiated replicas. Caches are generally not part of the
document- coherence group.
initiated

dependent on the current state of the network or usage of the document. Table 1 shows var-
ious parameters by which consistency protocols can be characterized (an overview of various
algorithms can be found in [33]).

Change distribution is about what is distributed. Possibilities include a notification that
something has changed (such as an invalidation message) [6], the full content of a docu-
ment [13], only differences [3], or the operation that caused a change.

Another issue is when a replica actually responds after it notices it contains stale data. For
example, assume a replica has just processed an update sent to it by a client. Its responsiveness
describes whether it immediately propagates the update, or that it waits some time as in lazy
replication [19]. It may also decide to do nothing and wait until a validation request is issued
by another replica.

The reaction of a replica is another design issue and describes how an update is propagated.
There are essentially only two alternatives: an update is either pushed to a replica, or a replica
pulls in an update from another replica. Most Web caching schemes follow a pull-based
strategy.

When dealing with replication, it is important to consider how many processes are allowed
to update a document. If the number of updating processes is one, then inconsistencies
resulting from concurrent updates cannot occur. In many existing solutions there is a single
primary server that serializes all updates. For Web-based applications, this approach often
works because there is only a single owner for a document. However, problems may arise in
the case of collaborative Web-based applications, such as proposed in [38].

Finally, it is important to consider which group of replicas is responsible for maintaining
consistency. If there is only a single permanent replica, maintaining consistency is easy
although other replicas may be updated in a lazy fashion. This approach comes close to
the single-writer case. With several replicas being responsible for maintaining consistency,
various synchronization techniques are needed to ensure that updates are propagated in the

order dictated by the consistency model.

In conclusion, we see that there is large variety of strategies and that we cannot decide
in advance which strategy is best. Our research concentrates on finding the best strategy for
each document separately, aiming at a global optimization of various performance metrics as
we explain next.

2.3 Selecting an Appropriate Policy

Our work is based on the premise that it makes sense to differentiate caching and replication
policies for Web documents. Obvious as this may seem, it is only recently that researchers
are starting to look for solutions that allow very different strategies to co-exist in a single
system.

Most research has concentrated on supporting a single family of strategies. For example,
the TACT toolkit [40] provides support for replication based on anti-entropy schemes [9] for
a range of consistency models. In a similar fashion, caching algorithms exist that base their
decisions on temporal correlations between requests [15, 35], but otherwise essentially follow
the same protocol. Closer to our approach are systems that have protocols that adapt the
way updates are propagated. For example, the adaptive leases described in [11] provide a
way for switching from a protocol in which updates are pushed to replicas, to one in which
updates are pulled in on demand. Combinations of push and pull strategies are also possible,
as described in [10].

Related to our work are systems that dynamically decide on the placement of replicas.
Examples of such systems in the Web are content delivery networks like RaDaR [32] and
Akamai [20]. These systems adapt the number and location of document copies to provide
copies close to the users’ locations and to balance the load of servers. Dynamic placement of
replicas has also been exploited in areas such as parallelism [2] and distributed databases [39].

Studying past access patterns to optimize future behavior of a system is not a new idea in
the Web community. Services such as prefetching, for example, rely on past access analysis to
determine which documents are worth downloading [14, 21, 26]. Other systems dynamically
organize the search path for a URL among a cache mesh based on a shared knowledge of
caches’ contents [23].

All these systems have in common that they do not provide support for very different
consistency protocols. At best, they offer facilities for optimizing protocols that belong to a
single (relatively small) family of solutions, although optimizations can often be done on a
per-object basis.

Also related to our work are systems that can dynamically change their internal compo-
sition. Such flexibility has been deployed in many domains. Flexible group communication
systems, such as the z-kernel [25] and Horus [36] split protocols into elementary modules
that can be composed together to obtain required features. The same principle has been
applied for building routers [17], network traffic analyzers [27], and so on. However, there are
relatively few replication systems that allow one to statically or dynamically choose between
different replication strategies. Examples of such systems are described in [5, 16], but neither
of these have been deployed in the context of the Web.

3 Evaluating Replication Strategies

To see whether per-document replication strategies are useful, we set up an experiment in
which we compared various strategies. Our experiment consisted of collecting access and
update traces from various Web servers and replaying those traces for different caching and
replication strategies. In this section, we explain our approach to evaluating strategies using
trace-driven simulations.

3.1 Simulation Model

To simplify matters, we assume that each document has a single owner who is allowed to
update its content. Each document has an associated primary server holding a main copy.
In terms of our model, presented in the previous section, we adopt the situation that there is
only a single permanent replica. Any other server hosting a replica of a document is referred
to as a secondary server for that document.

We consider only static documents, that is, documents of which the content changes only
when they are updated by their owner. Conceptually, when the primary server of such a
document receives a request, it merely needs to fetch the document from its local file system
and initiate a transfer to the requesting client. A widely-applied alternative is to generate a
document on each request using a myriad of techniques such as server-side scripts and CGI
programs. However, in many cases this approach can be emulated by replicating the genera-
tors to other servers along with the necessary data needed to construct the document that is
to be returned to the client. For simplicity, we did not consider these dynamic documents in
our experiments.

To evaluate caching and replication strategies, we need a model in which documents can
be placed on multiple hosts throughout the Internet. The validity of this model is important
for justifying the final results. We decided to group clients based on the autonomous system
(AS) of which they are part. An AS plays a crucial role in deciding how to route packets
across the Internet [4]. At the highest level, the Internet can be viewed as a routing network
in which the ASes jointly form the nodes. ASes are pairwise connected based on various
routing-policy decisions. Within an AS, routing takes place following an AS-specific internal
routing protocol.

An interesting feature of many ASes that is relevant for our experiments is that an AS
groups hosts that are relatively close to each other in a network-topological sense. In other
words, communication performance within an AS is often much better than between different
ASes. Based on this assumption, we decided to allocate at most one intermediate server for
each AS in our simulation models. All clients within an AS forward their requests through
the intermediate server for that AS, as shown in Figure 2. Clients for which we could not
determine their AS were assumed to directly contact a document’s primary server. This
approach for clustering clients is similar to that of [18], although at a coarser grain.

In our simulations, an intermediate server was configured either as a cache server or as
a server for document-initiated replicas. Documents were never allowed to be cached longer
than seven days. We also considered situations in which clients in an AS sent their requests
directly to the primary.

We simulated the benefit that our approach would bring when replicating a given Web
server’s content on a worldwide basis. In order to keep simulation results as realistic as
possible, we chose to run trace-based simulations [29]. Input data came from access traces

AS 1 AS 2 AS 3

Intermediate

server server

1

!

i Intermediate
| server

1

1
!
i Intermediate
1
|
1

[A— e ¥
! Primary !
Clients in an -///:/'/' server i AS of d ’
Client T ! of document’s
unknown AS | Client | ! / T \ ! primary server
1 1
1 1
E [client | [Client | | Client |

Figure 2: The general organization of clients, intermediate servers, and primary server for a
single Web document.

135
130}
125}
120
115¢
110}
105¢
100}

95+

90

Round-trip delay

Bandwidth=163kB/s

Measured samples —— |
Linear regression - — -

85 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000
Packet size

Figure 3: Determining the network performance to a host based on ping samples.

that we collected for a Web server. In addition, we gathered traces at the primary on when
documents were created or updated.

We also measured network performance to simulate transfer delays. For this purpose,
we measured actual latency and bandwidth between the primary server for a document and
each of the intermediate servers. In other words, we did not adopt a hypothetical model
of the network. To measure the network performance from our server to each AS in our
experiment, we randomly chose 5 hosts inside each AS. For each of these hosts, we sent a
number of “ping” packets of different sizes and measured the round-trip time. By running a
linear regression, we approximated the latency and bandwidth of the network connection to
these hosts. The latency corresponds to half of the round-trip delay for a packet of size 0; the
bandwidth corresponds to additional delays caused by varying packet sizes (see Figure 3). We
assume symmetrical network performance: the communication from the server to any host is
considered to perform equally well as the communication from that host to the server. Since
more detailed information was not available, we assumed that communication performance
within each AS was roughly the same.

We evaluated overall system performance for various strategies, using three performance
metrics. For each client request we measured its turnaround time, that is, the interval between
submission of a request and completion of the response. Turnaround time values were added
for a set of requests to obtain the total turnaround time. The second metric was the number of
stale documents that were delivered to clients. Finally, we measured the consumed bandwidth
for requests issued by intermediate servers or clients to the primary server, thus obtaining the
total consumed bandwidth over inter-AS links.

The properties of these metrics allow us to simulate the behavior for each document
separately, and subsequently add the results per metric to obtain the overall performance for
a set of documents.

3.2 Caching and Replication Strategies

Our experiment consisted of selecting a specific caching or replication strategy and distributing
the copies of a document across the intermediate servers. Table 2 lists the various strategies
that we evaluated. Besides applying no replication or caching at all (NR), a distinction was
made between caching, replication, and hybrid strategies that combined both.

The CV caching strategy corresponds to having a cache server check the validity of a
cached document by sending an If-Modified-Since request to the primary server each time a
client asks for such a document. The CLV strategy has been implemented in the Alex file
system [7]. When a document is cached, it is timestamped with an expiration time Tezpire
that depends on the last time the document was modified. A cached document is considered
valid until its expiration time. If Tiycpeq 1S the time when the document is stored in the cache
and Tistmodified the time it was last modified, then

Tezpire = Lecached + ¢ (Tcached - Tlast_modiﬁed)

where « is generally set equal to 0.2, such as in the default Squid configuration files. The
CLV strategy thus simply assigns a longer expiration time to documents that have not been
modified for a long time. After the expiration time, the document is removed from the cache.
A variation to CLV is CDV. In this case, instead of removing the document at its expiration
time, the cache server keeps the document in the cache, but issues an If-Modified-Since request
to the primary server the next time it is requested, thus pulling in a fresh copy only if
necessary. CDV is followed in the Squid cache server [8].

In the SI strategy, intermediate servers still follow a caching policy, but the server promises
it will send an invalidation message whenever the document is updated. This strategy has
been followed in the AFS distributed file system [34], but has also been used in combination
with leases for Web caching [6, 11]. This strategy obviously requires the server to keep track
of all copies of its documents.

In the SU family of replication strategies, the primary server chooses the “best” x ASes
for which it pushes and maintains copies of a document. Whenever a document is updated,
the primary will propagate the new version of the document to the z selected intermediate
servers. We define “best” as the ASes where most requests came from in the past. Our traces
showed that a relatively small number of ASes were responsible for the bulk of the client
requests. For example, 53% of all requests for one of our servers came from clients distributed
in only 10 ASes out of a total of 1480 ASes in our traces, and 71% of the requests could be
traced back to no more than 50 ASes. In our experiments, the values chosen for x were 10,
25, and 50.

Table 2: Evaluated caching and replication strategies.

Abbr. Name Description

NR No replication No replication or caching takes place. All clients forward their requests
directly to the primary.

Ccv Verification Intermediate servers cache documents. At each subsequent request, the
primary is contacted for revalidation.

CLv Limited validity Intermediate servers cache documents. A cached document has an
associated expiration time before it becomes invalid and is removed
from the cache.

Cbv Delayed verification Intermediate servers cache documents. A cached document has an
associated expiration time after which the primary is contacted for
revalidation.

Sl Server invalidation Intermediate servers cache documents, but the primary invalidates

cached copies when the document is updated.

SUx Server updates The primary maintains copies at the & most relevant intermediate
servers; £ = 10, 25 or 50

SU50+CLV Hybrid SU50 & CLV The primary maintains copies at the 50 most relevant intermediate
servers; the other intermediate servers follow the CLV strategy.

SU50+CDV | Hybrid SU50 & CDV | The primary maintains copies at the 50 most relevant intermediate
servers; the other intermediate servers follow the CDV strategy.

Finally, we experimented with two hybrid strategies. For the top best 50 ASes, we used
strategy SU50, while all remaining intermediate servers were configured as cache servers,
following strategy CLV and CDV, respectively.

4 Simulations

We collected traces from two different Web servers: the Vrije Universiteit Amsterdam in The
Netherlands (VU Amsterdam), and the Friedrich-Alexander University Erlangen-Niirnberg in
Germany (FAU Erlangen). Table 3 shows the general statistics for these two sites. Although
we collected traces at other sites as well, they turned out to be too small in terms of number
of accesses that we decided to exclude them from further experiments.

We filtered the traces by removing documents that had been requested fewer than 10 times
during the months-long tracing period. Simulating replication policies for such documents
would not provide any meaningful result, nor would these results be useful for predicting
which replication policy will be optimal in the near future. The filtering process removed
about 67% of the documents from the traces, yet only 5% of the requests. One can safely
associate any replication policy to these documents, but they will hardly have any effect on
the total evaluation metrics over the whole document set.

4.1 Applying a Global Strategy

In our first experiment each document was assigned the same strategy. The results are shown
in Table 4. Not surprisingly, strategy NR. (i.e., no caching or replication) leads to much con-
sumed bandwidth and gives relatively bad performance with respect to the total turnaround
time. Likewise, strategy CV in which the validity of a cached document is always checked

Table 3: General access and update statistics for the chosen Web sites.

Issue FAU Erlangen | VU Amsterdam
Start date 20/3/2000 13/9/1999
End date 11/9/2000 18/12/1999
Duration (days) 175 96
Number of documents 22,637 33,266
Number of requests 1,599,777 4,858,369
Number of updates 3338 11,612
Number of ASes 1480 2567

Table 4: Performance results using the same strategy for all documents, measuring the total
turnaround time (TaT), the number of stale documents that were returned, and the total
consumed bandwidth. Optimal and near-optimal values are highlighted for each metric.

FAU Erlangen VU Amsterdam
Strategy TaT (hrs) | # Stale docs | Bandw. (GB) || TaT (hrs) | # Stale docs | Bandw. (GB)
NR 158.4 0 16.50 312.6 0 114.87
cv 176.6 0 15.82 3243 0 99.76
CLv 141.8 203 15.82 241.8 136 99.88
Cbv 141.8 196 15.80 241.8 130 99.72
Sl 141.7 0 15.81 241.1 0 99.72
SU10 99.4 0 14.00 273.2 0 114.12
SuU25 88.9 0 17.25 2241 0 118.50
SU50 79.4 0 23.16 194.9 0 131.90
SU50+4-CLV 77.9 35 23.11 170.4 43 124.88
SU50+CDV 77.9 35 23.11 170.4 38 124.86

with the primary upon each request, leads to high total turnaround times. Improvement is
achieved with CLV and CDV at the cost of returning stale documents. When comparing SI
to CV, CLV, and CDV, it shows to be best with respect to total turnaround time. Of course,
SI cannot return stale documents, except in the rare case when a request is sent during the
invalidation propagation period. Its performance with respect to consumed bandwidth is
approximately the same as the others.

The replication strategies can bring down the total turnaround times, but generally lead to
an increase of consumed bandwidth. This increase in bandwidth is caused by the fact that an
update may be outdated by a next update before a client issued a request. Combining SU50
with a caching strategy for the remaining intermediate servers improves the total turnaround
time, but also leads to returning stale documents.

Table 4 also shows that most strategies are relatively good with respect to one or more
metrics, but no strategy is optimal in all cases. In the next section, we discuss the effects if
a global strategy is replaced by assigning a strategy to each document separately and show

10

that per-document replication policies lead to better performance with respect to all metrics
at the same time.

4.2 Applying Per-Document Strategies

Instead of applying the same strategy to all documents, we propose to assign each document
its own strategy. By doing so, it becomes possible to obtain good performance with respect
to each of the three metrics. Crucial to this approach is the method by which a strategy is
assigned to each document separately, referred to as an assignment method. In this section, we
derive assignment methods that will lead to sets of (document, strategy)-pairs that are optimal
with respect to overall system performance. We first explain what optimality actually means
before discussing our assignment methods.

4.2.1 Optimal Arrangements

Let D be a set of documents, and S a set of strategies for replicating documents. If we assign
a specific strategy to each document d € D, we obtain what we refer to as an arrangement: a
collection of (document, strategy)-pairs. Each arrangement will consist of |D| elements. With
|S| strategies, there are a total of |S|IP! different arrangements. We denote the set of all
possible arrangements as A.

To compare arrangements, we take a look at how well an arrangement performs with
respect to various performance metrics. We assume that there are N performance metrics,
and that each metric is designed such that a lower value indicates better performance. The
three performance metrics introduced above (i.e., turnaround time, stale copies delivered, and
bandwidth) meet this criterion. Let s4(d) denote the strategy that is assigned to document d
in arrangement A, and res(myg,d, s4(d)) the value in metric my, that is attained for document
d using strategy s4(d). For each arrangement A, we can then construct the following result
vector total(A):

total(A) = (total (A)[1], ..., total(A)[N])

with
total(A)[k] = > res(my, d, s4(d))
deD

Note that total(A)[k] is simply the aggregated performance in metric my. For example, in
our experiments each total(A)[k] represents the total turnaround time, the total number of
returned stale documents, or the total consumed bandwidth on inter-AS links, respectively.

Because we assume that a lower value in a metric always indicates a better performance,
using result vectors introduces a partial ordering on the complete set A of arrangements, such
that

total(4;) < total(4s) iff Vie {1,...,N}: total(A1)[i] < total(A2)[i] and
35 €{1,...,N} : total(A1)[j] < total(As2)[j]

Obviously, if total(A4;) < total(A43) then A; should be considered to be better than Ao as it
leads to better performance values for each metric.

11

As an example, consider the results from Table 4 for FAU Erlangen. Let Acy be the
arrangement in which each document is assigned strategy CV, Acry be the arrangement
with CLV and Acpy be the one with CDV for each document. In this case, we have

total(Acy) = (176.6, 0, 15.82)
tOtal(ACLv) = <1418, 203, 1582)
total(Acpy) = (141.8, 196, 15.80)

and that total(Acpy) < total(Acry). In our experiments with traces from FAU Erlangen,
it is seen that CDV is indeed better than CLV. However, A¢y cannot be ordered with respect
to either Acry or Acpy; Acy is neither better nor worse than either of the other two.

It does not make sense to further consider an arrangement that is outperformed by another
arrangement on all metrics. So, for example, choosing Acry as an arrangement is pointless
because Acpy is better or equal with respect to all metrics for the set of documents in our
experiment.

In general, the collection of all possible arrangements 4 has a subset of optimal arrange-
ments A*. Formally, A* is defined as

A*={A e Al AA" € A:total(4') < total(A4)}

Our goal is to find assignment methods that will lead to this set of optimal arrangements.
One approach to finding A* is to use the brute-force assignment method. With this method,
we simply compute the result vectors for all |S ||D | arrangements in A, and choose the ar-
rangements with the best ones. Of course, this approach is computationally infeasible. In the
following, we derive a much more efficient method.

4.2.2 Optimal Assignment Methods

To simplify our explanation, consider only two performance metrics m; and ms, for example,
turnaround time and bandwidth. In Figure 4(a), the shaded area represents all possible result
vectors for arrangements irrespective of the assignment method used. As we explained, this
area represents |S |‘D " arrangements. Optimal arrangements will be represented by points
on the border of this area, as also shown in Figure 4(a). Keep in mind that an optimal
arrangement is achieved by the appropriate assignment of strategies to documents.

The area representing arrangements is bounded by the two lines k1 = mZm(AZ[l]) and

ky = min(A;[2]). We define A as an ideal arrangement that produces the performance
7

metrics k1 and ko, with total(fi) < total(A4) VA € A. Note that, in general, A will not exist,

~

that is, there is no assignment of strategies to documents that produces total(A). However,
we can consider total(fi) as a best point: it represents the best attainable performance for
any possible arrangement.

The question is how we can efficiently find optimal arrangements. If we consider infinitely
large sets of documents and, likewise, assume that there are an infinite number of replication
strategies to select from, the set of optimal arrangements can be approximated by a continuous
and convex curve, as shown in Figure 4(b). Each point on this curve represents an optimal
arrangement. If we can devise a method for finding a point on this curve, we argue that such
a method can also be used to find an optimal arrangement for a finite set of documents and
finite set of strategies. In the following, we first devise a method for finding points on the
curve, and then transform that method so that it can be applied to finite sets of arrangements.

12

| i Area representing | Area representing |
® arrangements arrangements
Lo
S % 2l Arrangements with
@ L] . . Q the same cost
E [% Points representing E NI
S 3 optimal arrangements 3 !
g | ! sed” g | ! Tangent for optimal
% Lo e g : arrangements
L I ~ % o I ~
f 1 o A 1
gt i total(A) vy - K i total(A)
i i 90000 § i
_.I.___________________________'_‘__‘_-m.w.-...._.-._.__.-.__.- B it e E R R e
o 1 T I 1
Performance metric m; Performance metric m;
(a) (b)

Figure 4: (a) The area of attainable result vectors for arrangements. (b) Approximating the
set of optimal arrangements using tangents.

Our first concern is to find points on the curve. To do so, we construct tangents. With
two performance metrics, m; and meo, a tangent can be represented by a straight line

a-mi+b-my=0C

which has a specific slope for any given constant C. The tangent has the property that it
intersects the curve at exactly one point (which corresponds to an optimal arrangement). In
addition, a tangent for a convex curve has the property that for any constant C' < C, the
line

a-mi+b-mg=0C"

will not intersect it.

Tangents can be constructed as follows. We take a look at linear combinations of the
values in each performance metric. In particular, we can associate a total cost with each
arrangement A by considering a weight vector w = (w[1],...,w[N]) with >>p_, w[k] = 1 and
Vk : w[k] > 0, leading to:

N
costy (A) = w(k] - total (A)[K]

k=1
With N = 2, each weight vector w is uniquely associated with a specific slope. It is important
to note, that although we associate a specific cost with each arrangement, it is senseless to
compare two costs if they are computed with different weight vectors. In fact, it may be hard
to interpret a cost meaningfully as we are adding noncommensurate values. Costs are used
only for comparing arrangements, provided they are computed using the same weight vector.
Each weight vector leads to a collection of parallel lines, each line representing arrange-
ments that have the same cost under w as shown in Figure 4(b). We then need to find the
arrangement A for which costy(A) is minimal. This arrangement will be optimal for w and

13

will lie on the curve forming the border of the area representing arrangements as shown in
Figure 4(b). As a consequence, the curve itself can be expressed as the set A* (recall that we
are still considering infinitely large sets of arrangements):

A = U{A € AVA' € A : costw(A) < costw(A')}
w

The following observation is important. Constructing a tangent will lead to finding an
optimal arrangement. To construct a tangent, we are looking for a method that, for a given
weight vector w and an infinitely large set of arrangements A, will minimize costw(A). This
method can also be used for finding an optimal arrangement in a finite set of arrangements.

A method that accomplishes this is the one that assigns to each document d a strategy
s from the complete set of strategies S, for which 21]:]:1 wlk] - res(my,d, s) is minimal. This
assignment method will indeed lead to an optimal arrangement A* for the given weight vector
w, which can be seen as follows:

costw(A*) = %ﬂ[COStW(A)]

- gﬁ[gw[k] - total (A)[k] |
N

= }}gﬂ[zw[k] (O res(my, d, sa(d))) |
k=1 N decA

= min[>" Y wlk] - res(my, d, s(d)) |
deA k=1 N

> s> (mial>] - restmso o))
deA k=1

We refer to arrangements resulting from these assignment methods as cost function arrange-
ments, as they directly take the total cost of a document in terms of performance into account.
Note that to compute an optimal arrangement for a given weight vector, requires at most
|D| - |S| computations. This is a considerable improvement over the brute-force assignment
method discussed earlier.

4.3 Results

To simplify matters, we decided to make optimization of consistency a major requirement by
considering cost function arrangements with a large weight for the number of stale documents
returned. In other words, we looked at models that would implement strong consistency. By
subsequently modifying the relative weights of total turnaround time and total consumed
bandwidth, we obtain optimal arrangements that implement various turnaround/bandwidth
tradeoffs.

Figure 5(a) shows the performance of arrangements in terms of total turnaround time
and consumed bandwidth for the data collected at FAU Erlangen. Each point on the curve
corresponds to a cost function arrangement over the set of documents with one particular set
of weights. Comparable results for the VU Amsterdam are shown in Figure 5(b).

We compare each arrangement with the ideal arrangement A discussed above. This point
corresponds to the best achievable total turnaround time (obtained by selecting for each

14

. - 135 - r r T T T T T
24 SUSO+CLV 1 SU50+CDV * 4— SU50
x«x4— SU50 130 1
a 27 1 8, 125 x 1
o SU50+CDV <=
z or 1 g 120 SU50+CLV SU25 —p x 1
=}
'-g 18} CLV i ° us 1
2 SU25 —» = 3
g 6 suU10 o uo 1
> r CDV —»x 1 e si
2 E 105 Ideal 1
Z 1 x S| 1 S 100 | Mangement cLv M |
(5]
S | Cost function arrangements] T g5 <‘ Cost function
ket K ke i arrangements CcDV 1
IS 10 b J 90 | A / 4
s Ideal arrangement 85

160 170 180 190 200 210 220 230 240 250

60 70 80 % 100 110 120 130 140 150)
Total turnaround time (hours)

Total turnaround time (hours)

T T T T T T T T 108 T T T T T T T T
1.4 1 106 1
& ~]
8 g 104
1.2 B =
£ < 102 1
5 5
-§ 2 100 Points representing]
S u)) 1 2 cost function arrangements
s Points representing S o |
3 cost function arrangements g
Q
E 108 | £ 9]
%) =3
S 2 g Ideal |
o 8 arrange-
8 106 1 T 9 | ment 1
5 g
e e
" *— |deal arrangement % 1
M
104 o))) . : : : :
72 73 74 75 76 77 78 79 80 81 169 170 171 172 173 174 175 176 177 178

Total turnaround time (hours) Total turnaround time (hours)

() (d)

Figure 5: Performance of arrangements vs. global strategies. (a) FAU Erlangen: complete
view. (b) VU Amsterdam: complete view. (c¢) FAU Erlangen: detailed view. (d) Vrije
Universiteit: detailed view.

15

Table 5: Number of documents to which a specific strategy is assigned.

Strategy FAU Erlangen | VU Amsterdam
NR 1351 3239
cv 0 2
CLv 66 437
CbVv 0 0
Sl 137 295
SuU10 13,779 4396
SU25 3243 5371
SuU50 3374 15,369
SU50+CLV 682 4099
SU504-CDV 5 58

document the strategy with the smallest turnaround time) and the best achievable bandwidth
usage (obtained by selecting for each document the strategy with the smallest consumed
bandwidth).

Figures 5(c)—(d) show a detailed view of the cost function arrangements. Each point on
the curve represents an optimal arrangement. Note that none of the global strategies comes
close to the point representing the ideal arrangement, and do not even fall in the graphs
shown in Figures 5(c)—(d). However, all cost function arrangements are close to the target if
we compare them to any global strategy. In other words, selecting replication strategies on
a per-document basis provides a performance improvement over any global strategy that we
considered in our experiments.

To further substantiate our claim that differentiating strategies makes sense, we consid-
ered a specific cost function arrangement to see which strategies were actually assigned to
documents. The results are shown in Table 5. These results show that it indeed makes sense
to apply several strategies, although neither CV or CDV are used often. The latter is in line
with the research results reported in [6].

5 Supporting Adaptive Distributed Documents

Up to this point, we have provided arguments to use per-document replication strategies
instead of applying a global, systemwide strategy. An important question is how assigning
strategies can be put to practical use. In this section, we discuss and evaluate an architecture
for documents that can dynamically select a strategy using real-time trace-driven simulations.
We show that periodically running the simulation experiments described above using fresh
traces allows a server to dynamically replace a document’s strategy while incurring only little
overhead.

5.1 System Architecture

To support adaptive replication, we consider a collection of servers hosting Web documents
as described in Section 3.1. A document’s primary server is responsible for evaluating and

16

AT N Y

Document Document Document
(s (g (Tog)
Secondary server Secondary server Secondary server
A
Adaptations v
Trace data

Document

Primary server

Figure 6: An architecture for supporting distributed documents.

possibly replacing the replication strategy currently assigned to a document. Evaluating a
strategy is done by taking traces collected over the most recent time period AT extracted from
a local log. The secondary servers for a document also collect traces, which they regularly
send to the primary, as shown in Figure 6.

The primary re-evaluates its choice of replication strategy by looking at the document’s
most recent trace data and simulating several alternative strategies as described in the previ-
ous section. The primary informs the secondary servers when it chooses a new strategy. Note
that not all secondaries may be registered at the primary; cache servers are not registered,
for example. Such servers continue to use the previous strategy, but are informed when con-
tacting the primary the next time. This scheme allows for gradual dissemination of a newly
selected strategy.

Servers holding a copy of a given document must collect traces of their activity for two
reasons. First, we believe that the owner of a document (i.e., the primary) should be allowed
to obtain logs of every request, independently of which server handled the request. This may
encourage the use of caching and replication also for sites whose revenue depend on their
popularity [31]. Second, access traces must be centralized at the primary to enable selection
of a replication strategy.

Each secondary keeps a log of the requests it receives. Periodically, new log entries are
sent to the primary. Sending a log entry to the primary is delayed at most, say, 10 minutes,
which guarantees that the primary’s view of the logs is at most 10 minutes late. We estimate
that this limit is adequate for piggybacking log entries while allowing responsive adaptations
of the current strategy as access patterns change. However, secondaries can send traces more
often if they wish, for example to reclaim storage space in their logs.

The primary writes the traces it receives to disk immediately. Since it can receive traces
from multiple secondaries, the set of entries in the primary’s log file is not sorted in chrono-
logical order. Therefore, when a re-evaluation takes place, the primary log file is first sorted
into a proper trace file that can be used for simulation.

17

5.2 Deciding When to Adapt

An important issue is when the primary should decide to re-evaluate a document’s strategy.
Doing so too often would waste computing resources, while re-evaluating too rarely would
decrease overall system performance. The simplest scheme for adaptation is to re-evaluate
the replication strategies at fixed time intervals, such as once a week. However, this approach
does not allow a document to react quickly to sudden changes in access or update patterns.
It would be more efficient to adapt as soon as such patterns change.

To detect these changes, each server monitors a number of variables such as frequency of
requests and average response time. Significant variation in one of these variables indicates
a change that may warrant replacing the current strategy. Variables are computed using a
standard technique. When a copy is created, a server initializes each variable V' to a value
derived from a first sample. Each time a new sample S is taken, V is updated using an aging
algorithm:

Vi=w-S+(1-w)V

where the value of w controls the relative weight given to a new sample with respect to the
previous sequence of samples.

Each time an adaptation takes place, low and high watermarks are set up for each variable.
If the value of V' ever reaches one of these watermarks, we assume that the access or update
pattern may have changed enough for the current strategy not to be optimal any more, so
that a re-evaluation should take place.

A problem that must be solved is where to monitor the variables. One possibility is
that the primary server of a document does all the necessary computations. However, this
would not be very practical, since variables can be computed only from the trace data sent
by copies. Since the primary receives traces out of order, computing a sequential history of a
variable would become quite complex. Therefore, each secondary computes variables locally
and transmits its value to the primary together with the trace data. The primary does not
compute a single value, but keeps the variables separate.

The primary monitors all the variables received from the document’s secondaries. Because
many of the variables account only for a small fraction of the overall traffic, one variable
reaching its watermark does not necessarily mean that a significant change is occurring. On
the other hand, if several variables reach their watermarks within a small time interval, it is
likely that a real change in the access patterns has occurred.

Sometimes, a secondary cannot wait for the primary to re-evaluate strategies. For exam-
ple, during a flash crowd there is a sudden and significant increase in the number of requests
received for a specific document. In such cases, the load increase on a secondary may deteri-
orate not only the turnaround time of requests for the document, but also that of every other
document hosted by the same server. This performance degradation is clearly not acceptable.

When a secondary server is receiving so many requests that its performance is being
degraded, it can decide to adapt by itself without requiring the document’s primary to re-
evaluate strategies. This approach allows fast responsiveness in case of a flash crowd. The
reaction consists of creating more copies at other servers to handle the load. Although sharing
the load among several servers may solve the overload problem, such a trivial adaptation is
likely not to be optimal. Therefore, an alarm message is sent to the primary requesting it to
immediately re-evaluate the overall replication strategy.

18

Table 6: Profiling Distributed Documents

Operation Execution time
Primary | Secondary
Network 1/0 49% 48%
Document Delivery 24% 28%
Logging 15% 9%
Replication Policy 12% 15%

5.3 Incurred Overhead Costs

Compared to traditional Web documents, distributed documents need to perform additional
operations such as logging trace data, sending traces to the primary and, of course, regularly
running simulations to evaluate strategies. As we show in this section, the extra costs incurred
by these operations is small compared to the performance improvements that per-document
replication strategies provide.

5.3.1 Overhead Due to Collecting Traces

Collecting traces consists of logging data and sending traces to the primary. To evaluate
the overhead incurred by merely collecting traces, we built a small prototype system for
distributed documents. This prototype was used to replay the trace files collected for the
various sites mentioned in Section 4. We profiled each process to get an idea of how much
time is spent for various tasks.

Table 6 shows the time that the program spends in its different modules. Network I/0
operations account for most of the computation. Logging adds up to 9% of the processing
time at each secondary. As the primary must log the requests that are addressed to it as
well as the trace data sent by secondaries, it requires more time, up to 15%. Although our
approach introduces some additional overhead, we argue that the extra costs are acceptable
compared to the benefits of adaptive replication policies. Each log entry contains an average
12 requests, adding to 25 bytes of data per logged request. However, one can expect that
this figure is highly dependent on the number of requests that the document receives every
10 minutes.

These figures have been obtained with a somewhat naive implementation of the log col-
lection: in the current prototype, each document copy collects traces and sends them to its
primary in isolation from all other documents; grouping log data from several documents on
the same site into a single message would allow for a much better use of network resources.

5.3.2 Balancing Simulation Overhead vs. Prediction Accuracy

Adapting the replication strategy of a document requires running as many simulations as
there are candidate strategies. Simulations are trace driven, which means that they execute
roughly in linear time compared to the number of requests in the trace. From this perspective,
traces should be kept as small as possible to save computing resources. However, short traces
may not reliably represent the current access pattern of a document. On the other hand, very
long traces may be unsuitable for predicting the next best strategy. This can easily be seen
if we assume that changes in access patterns occur in phases. In that case, a very long trace
will span multiple phases often making it much harder to use as a predictor for a next phase.

19

Erlangen University

Percentage of wrong predictions

Vrije Universiteit

0 500 1000 1500 2000 2500

Number of requests in trace file
Figure 7: Percentage of incorrect predictions as the chunk size varies.

Therefore, we need to find a tradeoff between trace size and accuracy, while at the same time
ensuring that traces have an appropriate maximum length.

To evaluate the accuracy of using traces to predict the next best strategy, we used the
same traces as described in Section 4. We selected only those documents that received at
least 5000 requests, leading to a sample size of 98 documents for the VU Amsterdam and 30
documents for FAU Erlangen. For each of these documents, we split the trace into successive
chunks of N requests each. We simulated each of the trace chunks with different replication
strategies. If the “best” policy of chunk n is the same as the “best” policy of chunk n + 1,
then the prediction made at time n is assumed to have been correct.

Figure 7 shows the incorrect predictions when the chunk size varies. We can see that
short trace files lead to many incorrect predictions. However, as the chunk size grows, the
proportion of error decreases to approximately 2% at 500 requests, after which it gradually
increases again.

In our case, we conclude that a reasonable chunk size is something like 500 requests. Note
that the irregular shape of the FAU Erlangen traces is most likely caused by the relatively
small sample size of 30 documents. We measured the computing time required by simulations
on a 600 MHz Pentium-IIT workstation. Each simulated request took about 28 us. So, for
example, simulating a 500-request trace over 10 different configurations takes about 140 ms
of CPU time.

5.4 Organization of a Distributed Document

To integrate adaptive distributed documents into the World Wide Web, we are developing
the Globule platform [30]. In this system, Web servers cooperate with each other to replicate
documents among them and to transparently direct client requests to the “best” replica.
Globule is implemented as a module for Apache, so turning normal Web documents into
adaptive replicated documents requires only to compile an extra module into an existing Web
server. Its internal organization is derived from Globe distributed shared objects [37].

Figure 8 shows the general organization of a distributed document. Each replica is made
of two separate local subobjects: a document’s content, which is available in the form of
delivery subobject capable of producing documents, and a replication subobject, which is
responsible for enforcing the document’s replication policy.

Incoming requests are first intercepted by the redirection subobject before actually reach-

20

Client

Primary server Secondary server

/ \
[Redirection J [Redirection J

Resource - < o Resource
Replication === Replication
management management

b t b t

Event Document Event
delivery monitors monitors

delivery
Figure 8: Organization of an adaptive replicated document.

A To control subobject

Policy
subobject

Adaptor
subobject

Load appropriate
policy for this copy

subobject

A

— Protocol
subobject

A

To communication
Y subobject

Figure 9: The internal organization of a replication subobject.

ing the document. This subobject figures out which replica is preferable for treating the in-
coming request, and directs the client to this replica. This redirection can be implemented via
basic HTTP redirection, or by more sophisticated mechanisms such as DNS redirection [22].
Selecting an optimal replica for each client is considered an orthogonal problem and is not
addressed in this article.

Requests are then intercepted by the replication subobject, whose role is to achieve doc-
ument replication according to the document’s replication policy. Once the replication sub-
object has authorized the request, the Web server uses one of its standard document delivery
modules to respond. These can be modules that deliver static documents, or modules that
generate a document on request.

Although this architecture may seem overly complex for static documents, it also supports
replication of dynamic documents. By merely replacing the document delivery module, all
mechanisms such as replication and adaptation can be applied without modification.

Each replication subobject is internally organized as shown in Figure 9. The policy sub-
object implements one specific strategy, such as the ones described in Section 3. It maintains
information about the consistency of the copy, such as the date of last modification and
the date of the last consistency check. Each time a request is issued, the protocol subobject
first transmits the characteristics of the request to the policy subobject. Based on its im-
plementation, the policy subobject responds by indicating how to treat the request: answer
immediately, check the validity before responding (i.e., send an If-Modified-Since request to the
primary server), etc. The protocol subobject is in charge of actually performing the opera-

21

tion. The protocol subobject can also directly receive incoming network messages, such as a
notification that the document has been updated.

The protocol subobject is in charge of collecting log data and transmitting them to the
primary. It also transmits the monitoring variables to the adaptor subobject. The latter
implements the adaptor component described above (see Figure 6). The adaptor subobject
decides whether an adaptation should take place. If so, it sorts the most recently received
traces, runs simulations, and informs the protocol subobject of the new optimal strategy. The
protocol subobject is then responsible for replacing the policy subobject.

Although adaptations take place at the primary, each secondary also has an adaptor
subobject. This adaptor is used only to detect flash crowds and create new replicas to handle
the sudden load. As we mentioned, whenever a secondary takes such a decision, it immediately
requests the primary to re-evaluate the overall strategy.

6 Conclusions

Based on our experiments, we argue that it makes sense to look for solutions that allow
assigning a replication strategy to individual Web documents. In the approach described
in this paper, it turns out that using trace-driven real-time simulations can be used for
dynamically adapting a strategy.

Our approach does require us to consider documents as objects instead of data. This
allows the encapsulation of replication strategies inside each document. Of course, this is
a fundamental change that prevents current Web servers and caching proxies from hosting
distributed documents. A new platform is necessary. We are building it as a module that
makes Apache servers cooperate to replicate documents [30]. Nonstandard protocols can
be confined to inter-server communication, while clients access documents using standard
protocols without further modification to their software. Doing this will provide users with
distributed documents in a transparent manner.

However, as more strategies are introduced, and will thus need to be evaluated, our
approach may possibly introduce performance problems. A solution can be sought in com-
bining methods for adaptive protocols from the same family with replacement techniques
for switching between different families of protocols using real-time simulations. Our future
work concentrates on further developing our architecture and its implementation, and seeking
solutions for efficient adaptations within and between families of consistency protocols.

Acknowledgements

We thank Franz Hauck for helping us collect traces at the Web server of the Department of
Computer Science at Erlangen University, Wyzte van der Raay of the NLnet Foundation for
assistance during our experimentation and Michel Chaudron from the Technische Universiteit
Eindhoven for helpful comments on the paper.

References
[1] Mohit Aron, Darren Sanders, Peter Druschel, and Willy Zwaenepoel, Scalable Content-aware

Request Distribution in Cluster-based Network Servers, Usenix Ann. Techn. Conf. (San Diego,
CA), June 2000, pp. 323-336.

22

[2]

[3]
[4]
[5]
[6]
[7]
[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

Henri E. Bal, Raoul Bhoedjang, Rutger Hofman, Ceriel Jacobs, Koen Langendoen, Tim Ruhl,
and Frans Kaashoek, Performance Fvaluation of the Orca Shared Object System, ACM Trans.
Comp. Syst. 16 (1998), no. 1, 1-40.

Gaurav Banga, Fred Douglis, and Michael Rabinovich, Optimistic Deltas for WWW Latency
Reduction, Usenix Ann. Techn. Conf. (Anaheim, CA), January 1997, pp. 289-304.

T. Bates, E. Gerich, L. Joncheray, J-M. Jouanigot, D. Karrenberg, M. Terpstra, and J. Yu.,
Representation of IP Routing Policies in a Routing Registry, RFC 1786, May 1995.

Georges Brun-Cottan and Mesaac Makpangou, Adaptable Replicated Objects in Distributed En-
vironments, Tech. Report 2593, INRIA, May 1995.

Pei Cao and Chengjie Liu, Maintaining Strong Cache Consistency in the World Wide Web, IEEE
Trans. Comp. 47 (1998), no. 4, 445-457.

Vincent Cate, Alex — A Global File System, File Systems Workshop (Ann Harbor, MI), USENIX,
May 1992, pp. 1-11.

Anawat Chankhunthod, Peter Danzig, Chuck Neerdaels, Michael F. Schwartz, and Kurt J. Wor-
rell, A Hierarchical Internet Object Cache, Usenix Ann. Techn. Conf. (San Diego, CA), USENIX,
January 1996, pp. 153-163.

Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker, Howard Sturgis,
Dan Swinehart, and Doug Terry, Epidemic Algorithms for Replicated Data Management, Sixth
Symp. on Principles of Distributed Computing (Vancouver), ACM, August 1987, pp. 1-12.

Pavan Deolasee, Amol Katkar, Ankur Panchbudhe, Krithi Ramamritham, and Prashant Shenoy,
Adaptive push-pull: Disseminating dynamic Web data, Proceedings of the 10th International
WWW Conference (Hong Kong), May 2001, pp. 265-274.

Venkata Duvvuri, Prashant Shenoy, and Renu Tewari, Adaptive Leases: A Strong Consistency
Mechanism for the World Wide Web, 19th INFOCOM Conf. (Tel Aviv, Israel), IEEE, March
2000, pp. 834-843.

Armando Fox, Steven D. Gribble, Yatin Chawathe, Eric A. Brewer, and Paul Gauthier, Cluster-
Based Scalable Network Services, 16th Symp. Operating System Principles (St. Malo, France),
ACM, October 1997, pp. 78-91.

James S. Gwertzman and Margo Seltzer, The Case for Geographical Push-Caching, Fifth Work-
shop Hot Topics in Operating Systems (Orcas Island, WA), IEEE, May 1996, pp. 51-55.

Hiroyuki Innoue, Kanchana Kanchanasut, and Suguru Yamaguchi, An Adaptive WWW Cache
Mechanism in the A18 Network, INET ’97 (Kuala Lumpur, Malaysia), Internet Society, June
1997.

Shudong Jin and Azer Bestavros, GreedyDual* Web Caching Algorithm: FExploiting the two
Sources of Temporal Locality in Web Request Streams, Comp. Comm. 24 (2001), no. 2, 174-183.

Jiirgen Kleindder and Michael Golm, Transparent and Adaptable Object Replication Using a Re-
flective Java, Tech. Report TR-14-96-07, Computer Science Department, University of Erlangen-
Niirnberg, September 1996.

Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and Frans Kaashoek, The Click Mod-
ular Router, ACM Trans. Comp. Syst. 18 (2000), no. 3, 263-297.

Balachander Krishnamurthy and Jia Wang, On network-aware clustering of Web clients, Pro-
ceedings of the SIGCOMM conference (Stockholm, Sweden), August 2000, pp. 97-110.

Rivka Ladin, Barbara Liskov, Liuba Shrira, and Sanjay Ghemawat, Providing Availability Using
Lazy Replication, ACM Trans. Comp. Syst. 10 (1992), no. 4, 360—391.

23

[20]
[21]
[22]

[23]

[24]

[25]
[26]
[27]
[28]

[29]

[30]

[31]

[32]

[33]
[34]

[35]

[36]
[37]

[38]

F. Thomson Leighton and Daniel M. Lewin, Global Hosting System, United States Patent, Number
6,108,703, August 2000.

Evangelos P. Markatos and Catherine E. Chronaki, A Top 10 Approach for Prefetching the Web,
INET 98 (Geneva, Switzerland), Internet Society, July 1998.

Patrick R. McManus, A Passive System for Server Selection within Mirrored Resource Environ-
ments Using AS Path Length Heuristics, 1999.

Scott Michel, Khoi Nguyen, Adam Rosenstein, Lixia Zhang, Sally Floyd, and Van Jacobson,
Adaptive Web Caching: Towards a New Global Caching Architecture, Comp. Netw. & ISDN Syst.
30 (1998), no. 22-23, 2169-2177.

B. Clifford Neuman, Scale in Distributed Systems, Readings in Distributed Computing Systems
(T. Casavant and M. Singhal, eds.), IEEE Computer Society Press, Los Alamitos, CA, 1994,
pp- 463-489.

Sean W. O’Malley and Larry L. Peterson, A Dynamic Network Architecture, ACM Trans. Comp.
Syst. 10 (1992), no. 2, 110-143.

Venkata N. Padmanabhan and Jeffrey C. Mogul, Using Predictive Prefetching to Improve World-
Wide Web Latency, SIGCOMM ’96 (Stanford, CA), ACM, July 1996.

Simon Patarin and Mesaac Makpangou, Pandora: A Flexible Network Monitoring Platform,
Usenix Ann. Techn. Conf. (San Diego, CA), USENIX, June 2000.

Guillaume Pierre, Thor Kuz, Maarten van Steen, and Andrew S. Tanenbaum, Differentiated Strate-
gies for Replicating Web Documents, Comp. Comm. 24 (2001), no. 2, 232-240.

Guillaume Pierre and Mesaac Makpangou, Saperlipopette!: a distributed Web caching systems
evaluation tool, Proceedings of the 1998 Middleware conference (The Lake District, UK), Septem-
ber 1998, pp. 389-405.

Guillaume Pierre and Maarten van Steen, Globule: a Platform for Self-Replicating Web Docu-
ments, Proceedings of the 6th International Conference on Protocols for Multimedia Systems,
October 2001, LNCS 2213, pp. 1-11.

James E. Pitkow, In Search of Reliable Usage Data on the WWW, Sixth Int’l WWW Conf. (Santa
Clara, CA), April 1997.

Micahel Rabinovich, Irina Rabinovich, Rajmohan Rajaraman, and Amit Aggarwal, A Dynamic
Object Replication and Migration Protocol for an Internet Hosting Service, 19th Int’l Conf. on
Distributed Computing Systems (Austin, TX), ACM, June 1999, pp. 101-113.

Yasushi Saito, Optimistic Replication Algorithms, Tech. report, University of Washington, August
2000.

Mahadev Satyanarayanan, Scalable, Secure, and Highly Awvailable Distributed File Access, IEEE
Computer 23 (1990), no. 5, 9-21.

Bhuvan Urgaonkar, Anoop Ninan, Mohammad Raunak, Prashant Shenoy, and Krithi Ramam-
ritham, Maintaining Mutual Consistency for Cached Web Objects, 21st Int’l Conf. on Distributed
Computing Systems (Phoenix, AZ), IEEE, April 2001.

Robert van Renesse, Kenneth Birman, and Silvano Maffeis, Horus: A Flexible Group Communi-
cation System, Commun. ACM 39 (1996), no. 4, 76-83.

Maarten van Steen, Philip Homburg, and Andrew S. Tanenbaum, Globe: A Wide-Area Distributed
System, IEEE Concurrency 7 (1999), no. 1, 70-78.

Jim Whitehead and Yaron Y. Goland, WebDAV: A Network Protocol for Remote Collaborative
Authoring on the Web, Sixth European Conf. on Computer Supported Cooperative Work (Copen-
hagen, Denmark), September 1999, pp. 291-310.

24

[39] Ouri Wolfson, Sushi Jajodia, and Yixiu Huang, An Adaptive Data Replication Algorithm, ACM
Trans. Database Syst. 22 (1997), no. 4, 255-314.

[40] Haifeng Yu and Amin Vahdat, Design and Evaluation of a Continuous Consistency Model for
Replicated Services, Fourth Symp. on Operating System Design and Implementation (San Diego,
CA), USENIX, October 2000.

Biographies of the Authors

Guillaume Pierre is a post-doc researcher at the Vrije Universiteit in Amsterdam. He holds
an engineer degree from the “Institut d’Informatique d’Entreprise” and a Ph.D. in Computer
Science from INRIA and the University of Evry-val d’Essonne. His main interests are flexible
computing systems and Internet performance optimization.

Maarten van Steen is associate professor at the Vrije Universiteit in Amsterdam. He
received an M.Sc. in Applied Mathematics from Twente University (1983) and a Ph.D. in
Computer Science from Leiden University (1988). He has worked at an industrial research
laboratory for several years before returning to academia. His research interests include oper-
ating systems, computer networks, (wide-area) distributed systems, and Web-based systems.
Van Steen is a member of the IEEE and the ACM.

Andrew S. Tanenbaum has an S.B. from M.I.T. and a Ph.D. from the University of
California at Berkeley. He is currently a Professor of Computer Science at the Vrije Univer-
siteit in Amsterdam and Dean of the interuniversity computer science graduate school, ASCI.
Prof. Tanenbaum is the principal designer of three operating systems: TSS-11, Amoeba, and
MINIX. He was also the chief designer of the Amsterdam Compiler Kit. In addition, Tanen-
baum is the author of five books and over 80 refereed papers. He is a Fellow of ACM, a
Fellow of IEEE, and a member of the Royal Dutch Academy of Sciences. In 1994 he was the
recipient of the ACM Karl V. Karlstrom Outstanding Educator Award and in 1997 he won
the SIGCSE award for contributions to computer science.

25

