
Highly Available and Scalable Grid Services

Guillaume Pierre
VU University Amsterdam

gpierre@cs.vu.nl

Thorsten Schütt
Zuse Institute Berlin
schuett@zib.de

Jörg Domaschka
Ulm University

joerg.domaschka@uni-ulm.de

Massimo Coppola
ISTI - CNR

massimo.coppola@isti.cnr.it

1. INTRODUCTION
Grid computing infrastructures create many new challenges re-

lated to data management. Grids are typically deployed at a large
scale, and one can only expect this scale to grow even more in terms
of number of machines, locations and administrative domains.

Researchers who build Grid computing infrastructures constantly
face scalability issues, both at the system-level of the Grid’s inter-
nals and at the user-level to support complex end-user applications.
The XtreemOS project is no exception to this rule: XtreemOS is
an E.U. research project that aims at “Building and Promoting a
Linux-based Operating System to Support Virtual Organizations
for Next Generation Grids” [1].

One of the explicit goals of the project is to address scalability
issues by abstracting these issues as much as possible from the in-
ternal implementation of the system. This is an ambitious goal,
since in the most general case scalability issues must be addressed
within each component of a distributed system [6]. We however
found that, to a certain extent, it is possible to build scalable ab-
stractions that allow other programmers to build system-level and
application-level functionality while giving less thought to scala-
bility issues.

This paper discusses a number of highly available and scalable
Grid services that are being built to support this idea. They can
be classified in three separate categories: (i) services to store/query
structured data in a scalable fashion; (ii) services to communicate
in a scalable fashion; (iii) services to (partially) hide the effects
of scale. The next sections discuss these three types of services
separately, then conclude this paper.

2. STRUCTURED DATA REPOSITORIES
One of the major functions where a Grid infrastructure faces se-

rious scalability issues is job scheduling. Job scheduling consists
of identifying a group of machines out of the entire Grid that are
collectively suitable and willing to execute a new task. Current
Grid scheduling algorithms use a hierarchical structure where each
location is represented by a local scheduler, and a meta-scheduler
issues scheduling requests to the local schedulers. In a truly scal-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WDDDM ’09, March 31, 2009, Nuremberg, Germany
Copyright 2009 ACM 978-1-60558-462-1/09/03 ...$5.00.

able system, however, the number of locations may simply prevent
one from doing this. Instead, XtreemOS has chosen a three-step
approach. First, resources are selected with respect to static job at-
tributes such as the desired CPU family, hardware specifications,
required libraries, etc. The list of suitable machines is then po-
tentially refined according to dynamically changing node attributes
– their current load, available disk space, etc. Finally, the actual
scheduling and negotiation for accessing resources can be issued
within a set of pre-selected machines that is orders of magnitudes
smaller than the entire Grid. We focus here on the first two steps,
and leave the actual resource scheduling for a further discussion.

2.1 Resource Selection based on static attributes
The goal of the resource selection service is to answer queries for

a list of machines that match a number of static attributes. Queries
may specify a specific value for a supported parameter (e.g., the
job must run on AMD64 CPU architectures), a range (e.g., the job
requires any amount of memory greater than 1 GB), or none at
all (e.g., the job does not depend on any version of library XYZ).
To support these queries in a scalable fashion, we organized all
Grid nodes in a peer-to-peer overlay dedicated to supporting such
queries.

All peer-to-peer approaches to similar problems rely on delega-
tion, where compute nodes register their attributes to registry nodes
that implement the lookup functionality. We however consider that
this approach should be avoided: (i) it creates unnecessary load on
the system due to the periodic revalidations of the registered values
and the need to check node availability regularly; (ii) it creates in-
consistency between the actual and registered attribute values, for
example, in the case of a failure of a compute node or its corre-
sponding registry node(s); (iii) it creates imbalanced workloads,
requiring extra effort to balance.

We instead proposed an approach where each node represents its
own attributes in the overlay. This means for example that a node
failure need not be accurately detected by other nodes, and that
no specific repair operation is necessary to reconstitute the overlay.
We proved using simulations and actual deployments that our ap-
proach scales well with the number of nodes as well as the number
of supported attributes. For more information we refer the reader
to [2].

2.2 Application Directory Service for nodes dy-
namic attributes

Next to static attributes that barely change over time, nodes may
be characterized by volatile attributes such as the current number of
jobs they are involved in and the amount of free space in their hard
drives (by opposition to the total size of the installed hard drives

of the machine). Job submission requests may of course contain
requirements regarding these attributes. Similarly, they may place
requests about groups of nodes that are difficult to address in the
resource selection service. For example, one may request that ma-
chines are located in different data centers to amximize the job’s
resilience to failures.

We decided to build this second level of resource selection using
a scalable directory service where nodes can register their prop-
erties. Additionally, the same scalable directory service is also a
useful abstraction to store system-level information regarding jobs,
users, administrative domains, and so on.

Our directory service implements its functionality on top of a
set of DHT overlays. Currently we support both OverlayWeaver
and Scalaris (which is described below). This allows one to se-
lectively benefit from the good properties of different DHTs. For
instance, some applications may exploit the Scalaris transactional
query semantic, while OverlayWeaver supports higher levels of se-
curity thanks to the use of Kademlia protocols.

Dynamic node attributes are periodically updated into the sys-
tem. Structured information entered in the system is attached at
least to a primary key, which acts as the item’ss key in the DHT.
By combining a different choice of the DHT implementation, and
different store/query algorithms executed on top of the DHT layer,
more complex query semantics like range query and multi-attribute
queries are achieved. As separate clients of the directory service
are also allowed to transparently share a same DHT, the approach
allows a user-defined QoS trade off to be set up with bounded over-
head.

Although many of the ideas exploited are relatively classical,
combining all of them in a single structure raises a number of inter-
esting research questions. One example is determining the optimal
number of replicas that each dynamically changing item stored in
the DHT should have, given that different items can be refreshed at
different rates and exploiting opportunistic optimizations, thereby
incurring different replication costs.

3. SCALABLE COMMUNICATIONS
Another critical feature in a large-scale Grid infrastructure is to

allow scalable communications between entities participating in the
same task. However, given the expected scale of the Grid and
the churn that one must expect in such environments, one should
not rely on point-to-point communications to efficiently spread in-
formation. We instead focus on the publish-subscribe paradigm,
which allows to decouple the information producers from the con-
sumers. A pub/sub system aims at bridging the gap by allowing
consumers to register their interests, and by routing information to
the corresponding consumers. The main goal here is to provide
strong data consistency in the face of node crashes and hefty con-
current read and write accesses.

Our Pub/Sub system, called Scalaris, comprises four layers. At
the bottom is a DHT which provides a simple put and get interface
to a dictionary-like data structure which is distributed over all par-
ticipating nodes. In contrast to many other overlays, our implemen-
tation stores the keys in lexicographical order. Lexicographical or-
dering instead of random hashing enables control of data placement
which is necessary to support range queries efficiently in the DHT.
The DHT provides scalability and fault-tolerance. The second layer
implements so-called symmetric replication which guarantees the
availability of data even when nodes fail or are unavailable. Sym-
metric replication divides all nodes into r equivalence classes, and
distributes the replica so that the nodes storing the replicas of item
belong to different equivalence classes. On top of the replication
layer, the third layer implements transaction data accesses, where

all read and write operations are performed inside transactions with
ACID properties. The transactions allow us to consistently update
all replicas belonging to one item and at the same update several
items in one atomic operation. This layer is particularly innova-
tive compared to the state of the art in the domain. The transaction
framework employs Paxos. The final layer is the pub/sub system
itself, which uses the layers below for managing subscribers and
topics. The maximum system throughput has been show to scale
linearly with the number of nodes. For more information we refer
the reader to [8, 7]. Scalaris also won the 1st price (shared) at the
IEEE Scalable Computing Challenge 2008.

4. HIDE THE EFFECTS OF SCALE
In a Grid environment, not all services can or should be imple-

mented in a decentralized fashion. For example, one can make a
strong case against the full decentralization of a cryptographic key
management system. Similarly, some services have too complex
functionalities to be able to benefit from a decentralized imple-
mentation. Although these services should therefore remain largely
centralized, they may suffer from issues related to the scale of the
environment they run in. First of all, many of these services should
be implemented in a fault-tolerant manner so as to provide contin-
uous service across node or network failures. Second, many ser-
vices can make use of replication to improve their performance in
the presence of heavy workloads. In both cases, the fact that a ser-
vice physically runs on a collection of nodes needs to be hidden
from the users of this service, even in the case of a change in the
list of machines collectively providing a service. We first discuss
how transparent fault-tolerance can be achieved, then how we can
hide the server group composition to its clients.

4.1 Virtual nodes
The goal of virtual nodes is to provide fault-tolerance function-

ality to service-oriented applications with minimum effort for the
service developers. We aim at (i) maximizing the reusability of ex-
isting replication-unaware code by (ii) making replication issues as
transparent as possible to the service developer. For this reason, vir-
tual nodes are implemented as a middleware layer, akin to an RMI
or SOAP container. Instead of instantiating a single server object
in a single server machine, virtual nodes create a group of logi-
cally equivalent server objects on several machines. The middle-
ware makes sure to maintain the consistency of the replicated server
object when incoming requests may modify the internal state.

The only assumption about a service is that it is a passive entity
whose execution is triggered only by incoming requests, and that
this execution is deterministic. This means in practice that issu-
ing the same request to a consistent set of replicas will leave repli-
cas in another consistent state. Services may have state and may
be invoked concurrently. Notably supporting this last feature is a
challenge, since the concurrent execution of multiple deterministic
requests may not be deterministic itself. We solve this problem by
applying deterministic thread scheduling strategies that ensure the
determinism of concurrent request invocation.

Virtual nodes allow a programmer to choose a replication policy
among several available ones, comprising several flavors of passive
and active replication. For more information we refer the reader
to [4].

4.2 Distributed servers
One important issue when using virtual nodes or any other sys-

tem that implements a single service abstraction over a distributed
group of machines is to give its user a simple contact address where
queries can be sent. This is the goal of Distributed Servers: a

distributed server is an abstraction that allows a group of server
processes to appear as a single entity, with a single IP address, to
its clients. Distributed Servers aim at allowing high-performance
client-to-server communication, while being totally transparent to
the clients. The only requirement is that the clients support the
Mobile IPv6 protocol [5].

A distributed server address is simply an IPv6 address provided
for the network service by other name resolution techniques such
as Domain Name System (DNS). For example using the distributed
server address, a client first connects to a contact node. Subse-
quently, a client connection may be transparently handed off – the
server endpoint of the connection may be transferred – to differ-
ent servers to effect load balancing or for client-specific process-
ing. With the use of Mobile IPv6 (MIPv6) route optimization, this
handoff provides a direct connection to the new server with corre-
sponding network efficiencies. Further data are not routed through
the contact node. This ability to migrate client connections without
modification of the client depends on the implementation of Mo-
bile IPv6, which typically supports client mobility. However, Dis-
tributed Servers inverts client mobility to provide the appearance of
server mobility.

Distributed servers allows to handoff connections to other server
nodes at the time a new TCP connection is established, but also at
later stages of an existing connection. For example, a server node
willing to shutdown for repairs may handoff all the connections
it is currently serving to other nodes so that its shutdown does not
impact the client experience with the service. For more information
we refer the reader to [9, 3].

4.3 Integrating virtual nodes with distributed
servers

Virtual nodes and distributed servers are highly complementary
to each other: virtual nodes provide fault-tolerant replication that
is mostly transparent to the service developer, but lacks an access
method that makes fault-tolerance transparent to the clients; dis-
tributed servers provide a solution for making the service replica-
tion transparent to the client. Although each service has its own
utility when used in isolation, we see that merging both systems
would in principle allow one to build fault-tolerant replicated ser-
vices where the complexity of replication would be transparent
to both the service developer, and to the client-side application.
Such a system could thus rely on open access protocols such as
HTTP/SOAP.

Merging these two different services into a single whole is how-
ever not a trivial task, mainly for two reasons. First, although both
services rely on some membership protocol to give a consistent
view of currently available replicas to all parties, the two services
have different requirements: virtual nodes need to be conservative
before declaring a node as failed, because the cost of a false posi-
tive is potentially very high; on the other hand, distributed servers
should detect node failures much more aggressively to present a
continuously available service to the clients.

Second, the semantic of failure recovery in virtual nodes and dis-
tributed servers is not exactly the same, which implies that certain
corner cases of node failures cannot be recovered transparently to
the clients. For example, in the case a server node fails while pro-
cessing a request, a backup server node can recover the client con-
nection to the crashed server but may lack sufficient information
about the request to restart it transparently. In this case a proper
exception reply can be sent to the client (instead of letting the dan-
gling connection reach a timeout value if we would not recover the
connection). We assume that on receipt of an exception, the request
can be quickly retried by the client.

5. CONCLUSION
As any large-scale distributed system, a Grid computing plat-

form needs to explicitly address a number of scalability and high
availability issues. Instead of addressing each such issue sepa-
rately in an ad hoc fashion, the XtreemOS project has chosen to
treat scalability and availability as first class objects by building
generic abstractions that allow other parts of the system to bene-
fit from good properties with no significant increase of complexity.
We first build peer-to-peer overlays to handle scalable and reliable
structured data management, in particular to support scalable job
scheduling within the Grid. Then, we build generic functionality
that can be used by any other system-level or application-level pro-
grammer willing to benefit from the said properties.

Two services have already been made publicly available: the re-
source selection service, as part of the first release of the XtreemOS
system [10], and Scalaris as an independent peer-to-peer distributed
key-value store [7]. Other services are expected to be part of the
next release of XtreemOS, and to contribute availability and scala-
bility properties to this new operating system for grid computing.

6. REFERENCES
[1] T. Cortes, C. Franke, Y. Jégou, T. Kielmann, B. Matthews,

C. Morin, L. P. Prieto, and A. Reinefeld. XtreemOS: a vision
for a Grid operating system. Technical Report #4,
XtreemOS, May 2008.
http://www.xtreemos.org/publications/
techreports/xtreemos-visionpaper-1.pdf.

[2] P. Costa, J. Napper, G. Pierre, and M. van Steen.
Autonomous resource selection for decentralized utility
computing. In Proc. 29th Intl Conference on Distributed
Computing Systems (ICDCS), June 2009.

[3] Distributed servers demonstration.
http://www.cs.vu.nl/~gpierre/mipv6/.

[4] J. Domaschka, H. P. Reiser, and F. J. Hauck. Towards generic
and middleware-independent support for replicated,
distributed objects. In Proc. 1st workshop on
Middleware-application interaction, 2007.

[5] D. Johnson, C. Perkins, and J. Arkko. Mobility Support in
IPv6. RFC 3775, June 2004.

[6] B. C. Neuman. Scale in distributed systems. In Readings in
Distributed Computing Systems, pages 463–489. IEEE
Computer Society Press, 1994.

[7] Scalaris – a distributed transactional key-value store.
http://code.google.com/p/scalaris/.

[8] T. M. Shafaat, M. Moser, A. Ghodsi, T. Schütt, S. Haridi, and
A. Reinefeld. Key-based consistency and availability in
structured overlay networks. In Proc. Intl. ICST Conference
on Scalable Information Systems, June 2008.

[9] M. Szymaniak, G. Pierre, M. Simons-Nikolova, and M. van
Steen. Enabling service adaptability with versatile anycast.
Concurrency and Computation: Practice and Experience,
19(13):1837–1863, Sept. 2007.

[10] Xtreemos-1.0. http:
//www.xtreemos.eu/software/downloading.

