
Scalable Join Queries in Cloud Data Stores
Zhou Wei

VU University Amsterdam
Tsinghua University Beijing

Email: zhouw@few.vu.nl

Guillaume Pierre
VU University Amsterdam

Email: gpierre@cs.vu.nl

Chi-Hung Chi
Tsinghua University Beijing

Email: chichihung@mail.tsinghua.edu.cn

Abstract—Cloud data stores provide scalability and high avail-
ability properties for Web applications, but do not support
complex queries such as joins. Web application developers must
therefore design their programs according to the peculiarities of
NoSQL data stores rather than established software engineering
practice. This results in complex and error-prone code, especially
with respect to subtle issues such as data consistency under
concurrent read/write queries. We present join query support
in CloudTPS, a middleware layer which stands between a Web
application and its data store. The system enforces strong data
consistency and scales linearly under a demanding workload com-
posed of join queries and read-write transactions. In large-scale
deployments, CloudTPS outperforms replicated PostgreSQL up
to three times.

Index Terms—Scalability, Web applications, Cloud Computing,
Join Queries, Secondary-key Queries, NoSQL.

I. INTRODUCTION

Web application workloads fluctuate widely according to
predictable as well as unpredictable patterns [1], [2]. To ac-
commodate load variations up to several orders of magnitude,
many Web application providers turn to Cloud computing
environments where computing capacity can be provisioned
on demand. Although scaling a stateless application server tier
is relatively easy, designing a data tier capable of increasing
its throughput to arbitrary levels while retaining a famil-
iar programming interface remains a challenge. Relational
databases can be scaled to a certain extent using replication
techniques [3], but this scalability remains limited (as we show
later in this paper). On the other hand, Cloud data stores such
as Bigtable [4], SimpleDB [5] and Cassandra [6] can always
accommodate higher workloads by adding extra hardware.
However, Cloud data stores have an important drawback:
they support only very simple types of queries which select
data records from a single table by their primary keys. More
complex queries such as joins and secondary-key queries are
not supported.

Join queries are an essential feature for any database system,
as they allow to query related informations from multiple
tables in a single atomic operation. These queries are often
the result of data normalization techniques, which have been
used for decades to help guaranteeing semantic data integrity
in large systems. The lack of join queries in Cloud data stores
can often be mitigated using techniques such as rewriting a
join query into a sequence of simple primary-key queries.

Chi-Hung Chi is supported by the National Natural Science Foundation of
China under Project Number 61033006.

However, such translation is not a trivial task at all. First,
one must design data schemas carefully to allow such query
rewriting. Second, and more importantly, programmers need
sufficient understanding of subtle concurrency issues to realize
and handle the fact that a sequence of simple queries is
equivalent to the original join query only in the case where
no update of the same data items is issued at the same time.
Although skilled programmers can effectively develop good
applications using this data model, we consider that program
correctness should not be an optional feature left under the sole
responsibility of the programmers. Correctness should as much
as possible be provided out of the box, similar to the idiotproof
strong consistency properties of relational databases.

This paper discusses the design and implementation of
join queries that are strongly consistent by design, relieving
programmers from the burden of adapting their programs to
the peculiarities of Cloud data stores. At the same time the
system retains the good scalability properties of the cloud data
stores. We implement join queries in CloudTPS, a middleware
layer which sits between the Web application and the Cloud
data store. CloudTPS in charge of implementing join queries
and enforcing strict ACID transactional consistency on the
data, even in the case of server failures and network partitions.
We presented the transactional functionalities of CloudTPS
in a previous publication [7]. The current paper focuses on
CloudTPS’s support for consistent join queries, while retaining
the original scalability and fault-tolerance properties of the
underlying Cloud data store1.

CloudTPS supports a specific type of join queries known as
foreign-key equi-joins. This is by far the most common type of
joins in Web applications. For example, every join query issued
by Wikipedia to its database belongs to this category2 [8].
Support for this family of join queries also allows us to
implement secondary-key queries: CloudTPS only needs to
maintain a separate index table that maps secondary key
values back to their corresponding primary keys. Secondary-
key queries are then translated into equivalent join queries.
When the main table is updated, its associated index table is
updated atomically as well.

The scalability properties of CloudTPS originate in the
fact that most queries issued by Web applications (including
transactions and join queries) actually access a small number

1Our prototype is available at http://www.globule.org/cloudtps.
2Wikipedia’s query workload also contains aggregate queries, which are

out of the scope of this paper.

of data items compared with the overall size of the database.
This property is verified in all real-world Web applications
that we studied: because database queries are embedded in the
processing of an end-user HTTP request, programmers tend to
naturally avoid complex and expensive queries which would
for example scan the entire database.

We demonstrate the scalability of CloudTPS using a realistic
workload composed of primary-key queries, join queries,
and transactions issued by the TPC-W Web hosting bench-
mark. This benchmark was originally developed for relational
databases and therefore contains a mix of simple and complex
queries similar to queries Web applications would use if their
Cloud data store supported them. We show that, with no
change of the initial relational data schema nor the queries
addressed to it, CloudTPS achieves linear scalability while
enforcing data correctness automatically. In large-scale con-
figurations, CloudTPS outperforms replicated PostgreSQL up
to three times.

II. RELATED WORK

The simplest way to store structured data in the cloud is
to deploy a relational database such as MySQL or Oracle.
The relational data model, typically implemented via the SQL
language, provides great flexibility in accessing data, including
support for sophisticated join queries. However, these systems
usually rely on full data replication techniques and therefore
do not bring extra scalability improvement compared to a non-
cloud deployment [3].

Cloud data stores such as Bigtable are praised for their
scalability and high availability properties [4]–[6]. They how-
ever require highly skilled programmers capable of manu-
ally handling consistency issues [9]. The most advanced one
for complex query support is Cassandra, which implements
secondary-key queries by building local indexes at each node
and translating secondary-key queries into scatter-gather op-
erations. To our best knowledge, no existing Cloud data store
supports join queries.

A number of recent systems support multi-item transactions.
Percolator focuses on incremental processing of massive data
processing tasks [10]. Megastore supports transactions within
fine-grained partitions of data, but only limited guarantees
across them [11]. Deuteronomy operates over a wide range
of heterogeneous data sources [12]. G-Store proposes key
grouping protocols, allowing for transactions to run within
pre-defined groups [13]. Scalaris uses Paxos to support trans-
actions across any number of key-value pairs [14]. ecStore
supports range queries [15]. However, none of these systems
discusses support of complex queries such as join queries.

H-Store [16] is a distributed in-memory OLTP database
which supports the SQL language. However, its scalability
relies on careful data partitioning across executor nodes. H-
Store does not support join queries across multiple partitions.
Similarly, ElasTraS automatically partitions data across a
number of database nodes but supports complex queries only
within a single partition [17].

Fig. 1. An example data model for CloudTPS

Schism analyzes a query log to propose a data placement
which minimizes the number of partitions involved in transac-
tions [18]. This work is very complementary to the work on
CloudTPS. However, it does not address the specific problem
of join queries where the list of database nodes which should
take part in a query can be found only while executing the
transaction.

III. DATABASE MODEL

A. Data Model

CloudTPS defines its data model as a collection of tables.
Each table contains a set of records. A record has a unique
Primary Key (PK) and an arbitrary number of attribute-value
pairs. An attribute is defined as a Foreign Key (FK) if it
refers to a PK in the same or another table. Applications may
use other non-PK attributes to look up and retrieve records.
These attributes are defined as Secondary Keys (SK) and are
supported in CloudTPS by creating a separate index table
which maps each SK to the list of PKs where this value of the
SK is found. A secondary-key query can thus be transformed
into a join query between the index table and the original table.
CloudTPS expects applications to define the table schema
in advance, with the table names, the PK, all the SKs and
FKs together with their referenced attributes. Other non-key
attributes can be left undefined in the table schema.

Figure 1 shows an example data model which defines four
data tables and one index table. The table book defines
book id as its primary key. The FK author id of table book
refers to the PK of table author. To support secondary-key
queries which select books by their titles, CloudTPS automat-
ically creates an index table indexOf bookTitle. Each record
of table book matches the record of table indexOf bookTitle
of which the PK value equals its SK title. Therefore, the
SK title is also a FK referring to the PK of the index table
indexOf bookTitle.

B. Join Query Types

CloudTPS supports a specific class of join queries known
as foreign-key equi-join: the relationship between two records
is expressed as an equality between a FK and a PK (in the
same or another table). Equi-joins are by far the most common
join queries, compared to relationships such as “less than”
or “greater than.” These queries often result from database
normalization methodologies. For example, we observed that
all join queries in Wikipedia follow this structure.

Fig. 2. CloudTPS’s representation of a join query

Join queries must give an explicit list of primary keys
referring to initial records found in one table. These records
and the table where they are called the “root records” and
“root table” of this query.

We consider only inner-joins which return all matching
records, and where the final combined record contains merged
records from the concerned tables. Other types of join, such
as outer-join (which may return records with no matching
record), and semi-join (which only returns records from one
table), are out of the scope of this paper.

C. API

Web applications access CloudTPS using a Java client-
side library, which offers mainly two interfaces to submit
respectively join queries and transactions.

Join queries are expressed as a collection of “JoinTable”
and “JoinEdge” Java objects. A JoinTable object identifies
one table where records must be found. It contains the table
name, the projection setting (a list of attributes to be returned)
and possibly a predicate (a condition that a record must
satisfy to be returned). A JoinEdge object represents a join
operation between two tables. It contains references to the two
JoinTable objects, the names and properties (i.e., PK or FK)
of join attributes. A join query must designate one JoinTable
object as the root table, which contains the list of primary
keys of the root records. Multiple JoinTable objects are joined
together using JoinEdge objects of which each matches the
FK from one JoinTable to the PK of another. Self-join queries
are supported by creating two JoinTable objects with the same
table name.

Figure 2 shows the SQL and CloudTPS representations of
a join query which retrieves information about two books
and their authors. The book object is the root table, and the
primary keys of root records are 10 and 20. A JoinEdge
starts from JoinTable “book” to “author” indicating the FK
“author id” in table “book” refers to the PK of JoinTable
“author”. The predicate of JoinTable “country” selects only
books with an author from the Netherlands.

CloudTPS also handles read-only and read-write transac-
tions defined as a “Transaction” java object containing a list

Fig. 3. CloudTPS system model

of “SubTransaction” objects. Each sub-transaction represents
an atomic list of operations on one single record. Each sub-
transaction contains a unique “className” to identify itself,
a table name and primary key to identify the accessed data
item, and input parameters organized as attribute-value pairs.

IV. SYSTEM DESIGN

CloudTPS considers join queries as a specific kind of
multi-row transactions. It therefore enforces full transactional
consistency to the data they access, even in the case of machine
failures or network partitions. Note that the underlying Cloud
data stores do not need to guarantee strong consistency across
multiple data items.

CloudTPS is composed of a number of Local Transaction
Managers (LTMs). To ensure strong consistency, CloudTPS
maintains an in-memory copy of the accessed application data.
Each LTM is responsible for a subset of all data items. We
assign data items to LTMs using consistent hashing [19] on the
item’s primary key. This means that any LTM can efficiently
compute the identity of the LTM in charge of any data item,
given its primary key. Transactions and join queries operate
on this in-memory data copy, while the underlying cloud data
store is transparent to them.

Figure 3 shows the organization of CloudTPS. Clients issue
HTTP requests to a Web application, which in turn issues
queries and transactions to CloudTPS. A transaction or join
query can be addressed to any LTM, which then acts as
the coordinator across all LTMs in charge of the data items
accessed by this query. If an accessed data item is not present
in the LTM’s memory, the appropriate LTM will load it from
the cloud data store. Data updates resulting from transactions
are kept in memory of the LTMs and later checkpointed back
to the cloud data store. LTMs employ a replacement policy
so that unused data items can be evicted from their memory
(the caching policy is discussed in details in [7]). CloudTPS
expects LTMs to be connected by a low-latency network as in
a data center.

A. Join Algorithm

1) Join queries: Intuitively, processing a join query span-
ning multiple tables requires to recursively identify matching
records, starting from the root records (known by their primary
keys) and following JoinEdge relationships. The method to
identify the matched records, however, differs according to
the role of the given records. If an already known record
contains a FK which references the PK of a new record,
then the new record can be efficiently located by its PK.

Forward SELECT * FROM author,book WHERE book.book id
query =10 AND book.author id=author.author id

Backward SELECT * FROM author, book WHERE author.author id
query =100 AND book.author id=author.author id

Table author
author id CloudTPS

(PK) index entries
100 book.author id

(10,30)
101 book.author id

(20)

Table book
book id author id title

(PK)
10 100 title1
20 101 title2
30 100 title3

Fig. 4. Index data layout, with two types of join queries

We call this type of join queries “forward join” queries. On
the other hand, if the PK of an already known record is
being referenced by the FK of a new record to be found,
then in principle it is necessary to scan the full table and
search for all records whose FK is equal to the PK of the
known record. We name such join queries “backward join”
queries. To avoid a prohibitively expensive full table scan for
each backward join query, we use a technique similar to “join
indices” in centralized databases [20], [21]. We complement
the referenced table with direct links to the PKs of matching
records. This allows to translate such queries into “forward
join” queries. On the other hand, we now need to maintain
these indexes every time the tables are updated. If a data
update changes the reference relationships among records, the
update query must be dynamically translated into a transaction
in which the indexes are updated as well.

Figure 4 shows an example index data layout to support a
forward and a backward join query, for the same data schema
as in Figure 1. The table book contains a FK author id
referring to the PK value of table author. The forward join
query can be processed directly without any indexes, as the
FK author id of its root book record identifies that the PK
of its matched author is 100. The backward join query,
on the contrary, starts by accessing its root record in table
author and requires additional indexes to identify the matching
record. The indexes are stored as arbitrary number of “index
attributes” in each record of the referenced table. Doing this
does not require to change the data schema as all Cloud
data stores support the dynamic addition of supplementary
fields onto any data item. Each index attribute represents
one matched referring record with the corresponding FK.
CloudTPS creates these indexes upon the declaration of the
data schema, then maintains their consistency automatically.
In Figure 4, the author record of PK(100) contains two index
attributes showing that this record is referenced by two book
records with PK 10 and 30. Using these indexes, the backward
join query in Figure 4 can then efficiently identify the two
matching book records.

2) Secondary-key queries: We use a similar solution by
building explicit indexes. However, unlike joins, there exists no
table where we can add index information. Instead, we create
a separate index table for each SK. Each record of the index
table has its PK equal to the SK of one or more records, of
which the PKs are stored as its index attributes. A secondary-
key query can then translate into a forward join query between

TABLE I
TRANSLATING A SECONDARY-KEY QUERY INTO A JOIN QUERY

Original SELECT * FROM book WHERE book.title=“bookTitle”
Translated SELECT * FROM book, indexOf bookTitle WHERE
query indexOf bookTitle.title=“bookTitle”

AND book.title=indexOf bookTitle.title

the index table and the original table. Table I shows an example
secondary-key query which searches records by the SK title of
table book. The translated query first locates the root record
in the index table by using the given SK value “bookTitle” as
the PK value. It then retrieves the PKs of the matched book
records.

B. Consistency Enforcement

To ensure strong consistency, CloudTPS implements join
queries as multi-item read-only transactions. Our initial imple-
mentation of CloudTPS already supported multi-item transac-
tions [7]. However, it required the primary keys of all accessed
data items to be specified at the time a transaction is submitted.
This restriction excludes join queries, which need to identify
matching data items during transaction execution. Besides, it
also prohibits transparent index management as programmers
would be required to provide the primary keys of the records
containing the affected index attributes. We therefore propose
two extended transaction commit protocols: (i) for read-only
transactions to support join queries, and (ii) for read-write
transactions to support transparent index management.

This paper uses the same mechanisms as in [7] to implement
the Isolation, Consistency and Durability properties:

Consistency means that a transaction executing on a
database that is internally consistent, will leave the database in
an internally consistent state. We assume that consistency rules
are applied within the logic of transactions, so Consistency is
ensured as long as all transactions are executed correctly.

Isolation means that the behavior of a transaction is not
impacted by the presence of other concurrent transactions.
In CloudTPS, each transaction is assigned a globally unique
timestamp. LTMs are required to execute conflicting trans-
actions in the order of their timestamps. Transactions which
access disjoint sets of data items can execute concurrently.

Durability means that the effects of committed transactions
will not be undone, even in the case of server failures.
CloudTPS checkpoints the updates of committed transactions
back to the cloud data store. During the time between a
transaction commit and the next checkpoint, durability is
ensured by replicating the data items and transaction states
across several LTMs.

We now turn to Atomicity: either all operations of a
transaction succeed successfully, or none of them does. In
CloudTPS, a transaction is composed of any number of sub-
transactions, where each sub-transaction accesses a single data
item atomically. To enforce Atomicity, transactions issue a
two-phase commit (2PC) across all LTMs responsible for the
accessed data items. As shown in Figure 5(a), in the first
phase, the coordinator submits all the sub-transactions to the

involved LTMs and asks them to check that the operation can
indeed be executed correctly. If all LTMs vote favorably, the
second phase actually commits the transaction. Otherwise, the
transaction is aborted. To implement join queries, we however
need to extend 2PC into two different protocols respectively
for join queries as read-only transactions, and for transparent
index management in read-write transactions.

1) Read-Only Transactions for Join Queries: The 2PC
protocol requires that the identity of all accessed data items
is known at the beginning of the first phase. However, join
queries can identify matching records only after accessing
the root records. We therefore extend the 2PC protocol.
During the first phase, when the involved LTMs complete
the execution of their sub-transactions, besides the normal
“COMMIT” and “ABORT” messages, they can also vote
“Conditional COMMIT” which requires more sub-transactions
to be added to the transaction. The LTM submits the new sub-
transaction to both the responsible LTM and the coordinator.
The responsible LTM executes this new sub-transaction, while
the coordinator adds it to the transaction and waits for its vote.
The coordinator can commit the transaction only after no sub-
transaction requests to add new sub-transactions.

As read-only transactions do not commit any updates, LTMs
can terminate these sub-transactions immediately after all
concerned LTMs return their votes. The coordinator therefore
does not need to send the “commit” messages to the involved
LTMs. Transactional consistency is enforced by the timestamp
ordering protocol: concurrent read-only transactions which
access non-disjoint sets of data items are executed in the same
order at all LTMs.

This extension allows join queries to access root records
first, then add matching records to the transaction during the
query execution. For example, in Figure 5(b) the coordinator
is initially only aware of two root records held by LTM 15
and LTM 66. After executing its sub-transaction, LTM 15
identifies a matching record hosted by LTM 34. LTM 15
submits the new sub-transaction to LTM 34 directly, and also
returns the new sub-transaction along with its “Conditional
COMMIT” vote to the coordinator. On the other hand, LTM 66
identifies no matching record so it simply returns “COMMIT.”
Finally, LTM 34 executes the new sub-transaction and also
returns “COMMIT” with no more new sub-transactions. The
coordinator can then commit the transaction by combining the
records together and returning the result to the client.

In case of machine failures or network partitions, LTMs
can simply abort all ongoing read-only transactions without
violating the ACID properties.

2) Read-Write Transactions for Index Management:
CloudTPS transparently creates indexes on all FKs and SKs.
To ensure strong data consistency, when a read-write trans-
action updates any data items, the affected index attributes
must also be updated atomically. As each index attribute stands
for a referring record matching to its belonging record, when
the FK of this referring record is inserted/updated/deleted, the
corresponding index attribute must also be adjusted. To enforce
strong data consistency, these affected index attributes must be

updated within the same read-write transaction. Considering
the example in Figure 4, a read-write transaction could insert a
book record which matches an existing record in table author.
When this read-write transaction commits, the primary key
of this new book record must already be stored as an index
attribute into the corresponding author record.

CloudTPS creates indexes automatically, so index mainte-
nance must also be transparent to the programmers. Here as
well, this means that transactions must be able to identify data
items to be updated during the execution of the transaction. For
example, a query which would increment a record’s secondary
key needs to first read the current value of the secondary key
before it can identify the records it needs to update in the
associated index table.

To implement transparent index management, we extend the
commit protocol for read-write transactions to dynamically
add sub-transactions. Similar to the extension for read-only
transactions, during the first phase, LTMs can generate and
add more sub-transactions to access new data items. However,
unlike in read-only transactions, LTMs should not submit
new sub-transactions to the responsible LTMs directly. In
read-write transactions, if any sub-transaction votes “ABORT,”
the coordinator sends abort messages to all current sub-
transactions immediately, in order to minimize the blocking
time of other conflicting transactions. Allowing LTMs to
submit new sub-transactions directly to each other opens the
door to ordering problems where the coordinator received
the information that new sub-transactions have been added
after it has aborted the transaction. Therefore, in read-write
transactions, the involved LTMs submit new sub-transactions
to the coordinator only. The coordinator waits until all current
sub-transactions return before issuing any additional sub-
transactions. The coordinator can commit the transaction when
all sub-transactions vote “COMMIT” and do not add any new
sub-transactions. If any sub-transaction in any phase votes
“ABORT,” then the coordinator aborts all the sub-transactions.

We can implement transparent index management with this
protocol. Whenever a sub-transaction is executed, the LTM in
charge of this data item automatically examines the updates
to identify the affected index attributes. If any FKs or SKs
are modified, the LTM then generates new sub-transactions to
update the affected index attributes.

Figure 5(c) shows an example of the extended read-write
transaction. Initially, the coordinator LTM 07 submits sub-
transactions to update data items hosted in LTM 15 and
LTM 66. LTM 15 identifies an affected index attribute hosted
by LTM 34, while LTM 66 identifies none. LTM 15 thus
generates a new sub-transaction for updating this index at-
tribute and returns it back to the coordinator along with its
vote of “COMMIT.” After both LTM 15 and LTM 66 vote
“COMMIT,” the coordinator starts a new phase and submits
the new sub-transaction to LTM 34. After LTM 34 also votes
“COMMIT,” the coordinator finally commits the transaction.

3) Fault Tolerance: CloudTPS must maintain strong data
consistency even in the case of machine failures and network
partitions. CloudTPS uses the same fault-tolerance mechanism

Fig. 5. Two-phase commit vs. the extended transaction commit protocols

as in our previous work. We therefore briefly introduce the
main concepts here, and refer the reader to [7] for full details.

To execute transactions correctly all LTMs must agree on a
consistent membership, as this is key to assigning data items
to LTMs. Any membership change is therefore realized by a
transaction across all LTMs.

During a network partition, LTMs are divided into multiple
disjoint groups. In this case, according to the CAP theorem, we
decide to guarantee consistency at the possible cost of a loss
of availability. A partition may proceed accepting transactions
provided that: (i) this partition is able to elect itself as the
“majority” partition, of which the LTMs represent more than
half of the previous membership; and (ii) its LTMs can recover
the consistent states of all data items. In all other cases the
system will reject incoming transactions until the partition
is resolved and it fulfills the condition again. If a majority
partition exists and manages to complete the recovery, the
other LTMs will discard their entire states and rejoin when
the network partition is resolved.

Recovering from an LTM failure implies that some sur-
viving LTM fulfills the promises that the failed LTM made
before failing. Such promises belong to two cases. In the first
case, a coordinator initiated a transaction but failed before
committing or aborting it. To recover such transactions, each
LTM replicates its transaction states to one or more “backup”
LTMs (chosen by consistent hashing through the system
membership). If the coordinator fails, its backups have enough
information to finish coordinating the ongoing transactions.

In the second case, a participant LTM voted “COMMIT”
for some read-write transactions but failed before it could
checkpoint the update to the cloud data store. Here as well,
each LTM replicates the state of its data items to one or
more “backup” LTMs so that the backups can carry on the
transactions and checkpoint all updates to the data store.
Assuming that each transaction and data item has N backups
in total, CloudTPS can guarantee the ACID properties under

the simultaneous failure of up to N LTM servers.
An LTM server failure also results in the inaccessibility of

the data items it was responsible for. Upon any change in
membership it is therefore necessary to re-replicate data items
to maintain the correct number of replicas. Following an LTM
failure, CloudTPS can return to its normal mode of operation
after all ongoing transactions have recovered, a new system
membership has been created, and the relevant data items have
been re-replicated.

V. EVALUATION

We now evaluate CloudTPS in three scenarios: micro- and
macro-benchmarks, and a scenario with node failures and
network partitions.

A. Experiment Setup

1) System Configuration: We execute CloudTPS on top of
SimpleDB running in the Amazon Cloud, and HBase v0.20.4
running in our local DAS-3 cluster [22]. In both platforms, we
use Tomcat v6.0.26 as application server. The LTMs and load
generators are deployed in separate machines.

DAS-3 is an 85-node Linux cluster. Each node has a dual-
CPU/dual-core 2.4 GHz AMD Opteron DP 280, 4 GB of mem-
ory and a 250 GB IDE hard drive. Nodes are connected with
a Gigabit LAN. In Amazon EC2 we use Medium Instances
in the High-CPU family, which have 1.7 GB of memory, 2
virtual cores, and 350 GB of storage.

2) Throughput Measurement: Given a number of LTMs,
we measure the maximum sustainable throughput under a
constraint of response time. In DAS-3, we define a de-
manding constraint where 99% of transactions must return
within 100 ms. DAS-3 assigns a physical machine for each
LTM, and has low contention on other resources such as the
network. On the other hand, in Amazon EC2, LTMs share a
physical machine with other instances, and have less control
over hardware resources. Furthermore, even multiple virtual

instances of the same type often exhibit different performance
behavior [23]. To prevent these interferences from disturbing
our evaluations, we relax the response time constraint in EC2:
90% of transactions must return within 100 ms.

To determine the maximum throughput of CloudTPS, we
issue workloads with increasing request rates until the re-
sponse time constraint is violated. Workloads are generated
by a configurable number of Emulated Browsers (EBs), each
of which issues requests from one simulated user. Each EB
waits on average 1 second between receiving a response and
issuing the next transaction.

Throughout the evaluation, we provision sufficient resources
for clients and the cloud data store, so that CloudTPS remains
the performance bottleneck. We configure CloudTPS to use
one backup for each transaction and data item.

B. Microbenchmarks

We first study the performance of join queries and read-
write transactions individually in CloudTPS using microbench-
marks. In this set of experiments, we deploy CloudTPS over
10 LTMs.

1) Workload: Two criteria influence the performance of join
queries in CloudTPS: the number of data items they access,
and the length of the critical execution path (i.e., the height
of the query’s tree-based representation). For example, a join
query joining two tables has a critical execution path of one.
We first evaluate CloudTPS under workloads consisting purely
of join queries or read-write transactions with specific number
of accessed records and length of critical execution path.

The microbenchmark uses only one table, where each record
has a FK referring to another record in the same table. We can
therefore generate join queries of arbitrary critical execution
path length. Given the length of the critical execution path, we
can also control the number of accessed records by varying the
number of root records. This table contains 10,000 records.

CloudTPS uses caching strategies to prevent LTMs from
memory overflow when loading application data. To avoid
performance interferences, in all micro-benchmark we ensure
that the hit rate remains at 100%.

2) Join Queries: Here we study the performance of
CloudTPS with join queries only. We first evaluate CloudTPS
with join queries all having the same length of critical execu-
tion path of one, but access different numbers of data items.

As shown in Figure 6(a), when the number of accessed
data items per transaction increases, the throughput expressed
in accessed records per second remains largely constant. We
can also see that instances in DAS-3 perform approximately
three times faster than medium High-CPU instances in EC2.

We then evaluate the system with join queries that access
the same number of data items (12 items), but with different
lengths of critical execution paths. Figure 6(b) shows the
impact of the critical execution path length. Simple primary
key queries (with query length 0) outperform join queries (with
query length at least 1) by roughly 50%. As the length of
the critical execution path increases, the maximum sustainable
throughput decreases slightly. This is expected as longer

execution paths increase the critical path of messages between
LTMs, and therefore imply higher transaction latencies. To
maintain the strict response time constraint, the system must
reduce throughput.

3) Read-Write Transactions: We now turn to a workload
composed of read-write transactions (including read-write
transactions which update index records). The updated index
records are included in the count of accessed records of a
transaction. We perform this evaluation in the DAS-3 platform.

Figure 6(c) shows that the number of record accesses per
second remains roughly constant. The bottleneck is therefore
the update of individual data items rather than the transaction
overhead. We also note that transactions which only update
data records and transactions which also update indexes exhibit
very similar performance. This means the updating index
records does not degrade the system performance significantly.
One only needs to pay the price of updating the extra index
records.

C. Scalability Evaluation

1) Evaluation setup: We now evaluate the scalability of
CloudTPS under a demanding workload derived from the
TPC-W Web application [24]. TPC-W is an industry standard
e-commerce benchmark that models an online bookstore. It
is important to note that TPC-W was originally designed for
relational databases. It therefore contains the same mix of join
queries and read-write transactions as cloud-based applications
would if their data store supported join queries.

Deploying TPC-W in CloudTPS requires no adaptation to
the database schema. We also kept all simple and complex
queries unchanged, and merely translated them to CloudTPS’s
tree-based representation as discussed in Section III-C. TPC-
W contains one secondary-key query which selects a customer
record by its user name. CloudTPS therefore automatically cre-
ates an index table “indexOf customerC uname” referring
to the SK “c uname” of data table “customer.” This query
is then rewritten into a join query across the two tables.

We derive a workload from TPC-W containing only join
queries and read-write transactions. This workload excludes all
simple primary-key read queries, which are the most common
query type for Web applications. This creates a worst-case
scenario for CloudTPS’s performance and scalability.

TPC-W contains 10 database tables. We populate the
TPC-W database with 144,000 customer records in table
“Customer” and 10,000 item records in table “Item.” We
then populate the other 8 tables proportionally according to
the TPC-W benchmark requirements. TPC-W continuously
creates new shopping carts and orders. During our scalability
evaluation, we observe a hit rate around 80%.

2) Linear Scalability: Figure 7(a) depicts CloudTPS’s scal-
ability in the Amazon cloud. The overall system throughput
grows linearly with the number of LTMs, which means that
CloudTPS can accommodate any increase of workload with a
proportional number of compute resources.

Figure 8 shows the distribution of the number of data items
accessed per transaction under the configuration of 40 LTMs.

T
h
ro

u
g
h
p
u
t
(R

e
c
o
rd

 P
e
r

S
e
c
o
n
d
) 60000

 50000

 40000

 30000

 20000

 10000

 0

Number of Accessed Records

 10 20 30 40 50 60 80 70 90 100

EC2+SimpleDB

DAS3+HBASE

(a) Join queries with different numbers of ac-
cessed data items

T
h

ro
u

g
h

p
u

t
(t

ra
n

s
a

c
ti
o

n
s
 p

e
r

s
e

c
o

n
d

)

 0 2 4 6 8 10

Length of Critical Execution Path

DAS3+HBASE
EC2+SimpleDB

 12

 4000

 3500

 3000

 2500

 2000

 1500

 1000

 500

 0

 4500

(b) Join queries with different length of exe-
cution path

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 5 10 15 20 25

Th
ro

ug
hp

ut

 (R
ec

or
d

P
er

 S
ec

on
d)

Number of Accessed Records

No Index (RPS)
Update Index (RPS)

(c) Read/write transactions with different numbers of
accessed data items

Fig. 6. Throughput with different types of join queries

T
h

ro
u

g
h

p
u

t
(t

ra
n

s
a

c
ti
o

n
s
 p

e
r

s
e

c
o

n
d

)

 0 10 20 30 40

Number of LTMs

 7000

 6000

 5000

 4000

 3000

 2000

 1000

 0

 8000

 50

(a) Scalability of CloudTPS in Amazon EC2 +
SimpleDB

T
h
ro

u
g
h
p
u
t

(t
ra

n
s
a
c
ti
o
n
s
 p

e
r

s
e
c
o
n
d
)

 15000

 10000

 5000

 0

 20000

 0 10

Number of Database Nodes

 20 30 40 50 60

Postgresql
CloudTPS+HBase

(b) Scalability of CloudTPS vs. PostgreSQL in
DAS3

Fig. 7. Scalability of CloudTPS under TPC-W workload of join queries and
read-write transactions only.

On average, read-only transactions access 4.92 data items
and read-write transactions access 2.96 data items. 82% of
transactions are join queries, while 18% are read-write. About
33% of read-only queries have a query length of one while
the other 67% have a query length of two. About 84% of
read-write transactions update indexes.

3) Comparison with a Relational Database: We compare
CloudTPS with PostgreSQL v.9.0 on DAS-3. The PostgreSQL
setup contains one master and N slaves, using the “Binary
Replication” mechanism [25]. We issue all read-write transac-
tions on the master, and balance read-only queries across the
slaves. When running CloudTPS, we count both CloudTPS
and HBase nodes as “database nodes.” Running the same
experiment in EC2 is not possible as we cannot measure the

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 10 20 30 40 50 60

C
ou

nt
 o

f T
ra

ns
ac

tio
ns

Number of accessed data items

(a) Read-Only Transactions

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25 30 35 40

C
ou

nt
 o

f T
ra

ns
ac

tio
ns

Number of accessed data items

(b) Read-Write Transactions

Fig. 8. Number of items accessed by transactions.

number of machines used by SimpleDB.
Figure 7(b) illustrates the differences between CloudTPS

and a replicated relational database. In small systems, Post-
greSQL significantly outperforms CloudTPS because each
slave can execute read-only queries locally. PostgreSQL
reaches a maximum throughput of 5493 TPS using one
master and six slaves. However, at this point the master
server becomes the bottleneck as it needs to process all
update operations and send the binary operations to its slaves.
The throughput eventually decreases because of the growing
number of slaves to which it must send updates. On the other
hand, CloudTPS starts with a modest throughput of 1770 TPS
in its smallest configuration of 4 machines (two machines
for CloudTPS and two machines for HBase). However, its
throughput grows linearly with the number of database nodes,
reaching a throughput of 15,340 TPS using 57 nodes (40 ma-
chines for CloudTPS and 17 machines for HBase). This clearly

 0

 500

 1000

 1500

 2000

 2500

 0 200 400 600 800 1000 1200

Th
ro

ug
hp

ut

 (T
ra

ns
ac

tio
n

P
er

 S
ec

on
d)

Time(Sec)

network
partition

machine
failure

Committed

Fig. 9. Throughput across network partitions and node failures.

illustrates the scalability benefits of CloudTPS compared to a
replicated relational database.

D. Tolerance of node Failures and Network Partitions

Finally, we illustrate CloudTPS’s resilience to machine
failures and network partitions, and more generally to any
change in the system membership. We configure CloudTPS
with 10 LTMs in DAS-3 and alternately create 3 network
partitions and 2 machine failures. Each partition lasts 1 minute.

As shown in Figure 9, in case of single-machine failures,
CloudTPS recovers within about 14 seconds before failed
transactions are recovered and the responsible data items of
the failed LTM are re-replicated to new backup LTMs. Most
of this time is spent recovering failed transactions, and would
not appear during graceful reconfigurations. For network parti-
tions, no data re-replication is necessary so CloudTPS recovers
almost instantly after the network partition is resolved. In all
cases the ACID properties are respected despite the failures.

During recovery from an LTM failure, the throughput drops
to zero. This is due to a naive implementation which simply
aborts all incoming transactions during recovery. A smarter
implementation could abort only the transactions accessing the
failed LTMs. We consider this as future work.

VI. CONCLUSION

Cloud data stores are often praised for their good scala-
bility and fault-tolerance properties. However, they are also
strongly criticized for the very restrictive set of query types
they support. As a result, Web application programmers are
obliged to design their applications according to the technical
limitation of their data store, rather than according to good
software engineering practice. This creates complex and error-
prone code, especially when it comes to subtle issues such as
data consistency under concurrent read/write queries.

This paper proves that scalability, strong consistency and
complex join queries do not necessarily contradict each other.
CloudTPS exploits the fact that Web applications mostly use
join queries which access a small fraction of the total available
data set. By carefully designing algorithms such that only a
small subset of the LTMs is involved in the processing of any
particular transactions, we can implement strongly consistent
join queries without compromising the original scalability
properties of the cloud data store. We designed transactional
protocols to address the needs of read-only join queries as well

as read-write transactions which transparently update index
values at runtime. The system scales linearly in our local
cluster as well as in the Amazon Cloud.

REFERENCES

[1] G. Urdaneta, G. Pierre, and M. van Steen, “Wikipedia workload analysis
for decentralized hosting,” Elsevier Computer Networks, vol. 53, no. 11,
pp. 1830–1845, July 2009.

[2] J. Elson, , and J. Howell, “Handling flash crowds from your garage,” in
Proc. Usenix ATC, 2008.

[3] B. Kemme and G. Alonso, “Don’t be lazy, be consistent: Postgres-R, a
new way to implement database replication,” in Proc. VLDB, 2000.

[4] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable : a distributed
storage system for structured data,” in Proc. OSDI, 2006.

[5] Amazon.com, “Amazon SimpleDB.” 2010, http://aws.amazon.com/
simpledb.

[6] A. Lakshman and P. Malik, “Cassandra: a decentralized structured
storage system,” SIGOPS Oper. Syst. Rev., vol. 44, no. 2, pp. 35–40,
2010.

[7] W. Zhou, G. Pierre, and C.-H. Chi, “CloudTPS: Scalable transactions
for Web applications in the cloud,” IEEE Transactions on Services
Computing, vol. PrePrints, 2011.

[8] “Wikibench – the realistic web hosting benchmark,” http://www.
wikibench.eu/.

[9] T. Hoff, “NoSQL took away the relational model and gave nothing back,”
High Scalablility blog, Oct. 2010, http://bit.ly/dCVu1a.

[10] D. Peng and F. Dabek, “Large-scale incremental processing using
distributed transactions and notifications,” in Proc. OSDI, 2010.

[11] J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin, J. Larson, J.-
M. Leon, Y. Li, A. Lloyd, and V. Yushprakh, “Megastore: Providing
scalable, highly available storage for interactive services,” in Proc.
CIDR, 2011.

[12] J. J. Levandoski, D. Lomet, M. F. Mokbel, and K. K. Zhao, “Deuteron-
omy: Transaction support for cloud data,” in Proc. CIDR, 2011.

[13] S. Das, D. Agrawal, and A. E. Abbadi, “G-Store: a scalable data store
for transactional multi key access in the cloud,” in Proc. SoCC, 2010.

[14] S. Plantikow, A. Reinefeld, and F. Schintke, “Transactions for distributed
wikis on structured overlays,” in Proc. DSOM, 2007.

[15] H. Vo, C. Chen, and B. Ooi, “Towards elastic transactional cloud storage
with range query support,” Proc. VLDB, 2010.

[16] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik,
E. P. C. Jones, S. Madden, M. Stonebraker, Y. Zhang, J. Hugg, and
D. J. Abadi, “H-Store: a high-performance, distributed main memory
transaction processing system,” in Proc. VLDB, 2008.

[17] S. Das, D. Agrawal, and A. E. Abbadi, “ElasTraS: An elastic transac-
tional data store in the cloud,” in Proc. HotCloud, 2009.

[18] C. Curino, E. Jones, Y. Zhang, and S. Madden, “Schism: a workload-
driven approach to database replication and partitioning,” Proc. VLDB,
vol. 3, pp. 48–57, September 2010.

[19] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin, “Consistent hashing and random trees: distributed caching
protocols for relieving hot spots on the world wide web,” in Proc. STOC,
1997.

[20] P. Valduriez, “Join indices,” ACM Trans. Database Syst., vol. 12, pp.
218–246, June 1987.

[21] P. O’Neil and G. Graefe, “Multi-table joins through bitmapped join
indices,” SIGMOD Rec., vol. 24, pp. 8–11, September 1995.

[22] HBase, “An open-source, distributed, column-oriented store modeled
after the Google Bigtable paper,” 2006, http://hadoop.apache.org/hbase/.

[23] J. Dejun, G. Pierre, and C.-H. Chi, “EC2 performance analysis
for resource provisioning of service-oriented applications,” in Proc.
NFPSLAM-SOC, 2009.

[24] D. Menascé, “TPC-W: A benchmark for e-commerce,” IEEE Internet
Computing, vol. 6, no. 3, 2002.

[25] PostgreSQL.org, “Binary replication tutorial,” 2010, http://wiki.
postgresql.org/wiki/Binary Replication Tutorial.

